Hi,I have a question. I would like to ask
How to plot a time-evolution of a 3D Gaussian function with Makie.jl.
I tried to write a code in reference to a surface-version code of sin( r )/r.
1.Make a model and Solve a time evolution equation i.e., the matrix-form time-dependent Schrodinger equation : (∂/∂t)ψ = -i H ψ
Here, ψ is a vector and H is a (time-independent) matrix.
#Make a model
#Def of H
using LinearAlgebra
eye(T::Type,n) = Diagonal{T}(I, n)
eye(n) = eye(Float64,n)
function H(Lx,Ly,Lz) #def of H
N = Lx*Ly*Lz
mat_Htb = zeros(Complex{Float64},N,N)
for iz = 1:Lz
for ix = 1:Lx
for iy=1:Ly
for dz in -1:1
jz = iz + dz
for dx in -1:1
jx = ix + dx
for dy in -1:1
jy = iy + dy
ii = (iz-1)*Lx*Ly + (ix-1)*Ly + (iy-1) + 1
jj = (jz-1)*Lx*Ly + (jx-1)*Ly + (jy-1) + 1
if 1 <= jx <= Lx && 1 <= jy <= Ly && 1 <= jz <= Lz
if dx == +1 && dy == 0 && dz == 0
mat_Htb[ii,jj] += im
end
if dx == -1 && dy == 0 && dz == 0
mat_Htb[ii,jj] += im/4
end
if dx == 0 && dy == +1 && dz == 0
mat_Htb[ii,jj] += im/2
end
if dx == 0 && dy == -1 && dz == 0
mat_Htb[ii,jj] += im
end
if dx == 0 && dy == 0 && dz == +1
mat_Htb[ii,jj] += -im
end
if dx == 0 && dy == 0 && dz == -1
mat_Htb[ii,jj] += im*(3/7)
end
if dx == 0 && dy == 0 && dz == 0
mat_Htb[ii,jj] += im
end
end
end
end
end
end
end
end
return mat_Htb
end
ix,iy,iz represent 3D coordinates.
#Def of Eq
using LinearAlgebra
using OrdinaryDiffEq
using DifferentialEquations
#Define the underlying equation
function time_evolution(ψdot,ψ,p,t)
ψdot.=-im.*H(Lx,Ly,Lz)*ψ
end
Lx = Ly = Lz = 10
ψ0 = [] # Initial conditions
for iz = 1:Lz
for ix = 1:Lx
for iy = 1:Ly
gauss = exp(-((ix)^2 + (iy)^2 + (iz)^2))
push!(ψ0,gauss)
end
end
end
tspan = (0.0,20.0) # Simulation time span
#Pass to Solvers
prob = ODEProblem(time_evolution,ψ0,tspan)
sol = solve(prob)
2. 3D Plotting of the solutions
#3D plot(volume plot)
using Makie
using FileIO
using LinearAlgebra
using AbstractPlotting
using ColorSchemes
x = 1: Lx # our value range
y = 1: Ly
z = 1: Lz
ρ(ix,iy,iz,nt) = abs2.((sol(nt)[(iz-1)*Lx*Ly + (ix-1)*Ly + (iy-1)])./norm(sol(nt)[(iz-1)*Lx*Ly + (ix-1)*Ly + (iy-1)]))
ψ(nt) = Float64[ρ(ix,iy,iz,nt) for ix in x, iy in y,iz in z]
scene = Scene(backgroundcolor = :white)
c = ψ(length(sol.t))
vol = volume!(
scene,
x, y, z, # coordinates to plot on
c, # charge density (functions as colorant)
algorithm = :mip, # maximum-intensity-projection
colorrange = (0,0.01),
transparency = true,
)[end]
update_cam!(scene, Vec3f0(1,0.5,0.1), Vec3f0(0))
scene[Axis].names.textcolor = :gray # let axis labels be seen on darkbackground
record(scene, "output.mp4", range(0, stop = 1.0, length = 20)) do nt
vol[4] = ψ(nt)
end
Then, this code passed and a mp4 animation was obtained.
But the solutions can’t be seen in the mp4 file.
I checked a snapshot at initial time is displayed
like this.
using Makie
using FileIO
using LinearAlgebra
using AbstractPlotting
r = LinRange(-20, 20, 500); # our value range
ρ(x, y, z) = exp(-((x)^2 + (y)^2 + (z)^2)) # function (charge density)
# create a Scene with the attribute `backgroundcolor = :black`,
# can be any compatible color. Useful for better contrast and not killing your eyes with a white background.
scene = Scene(backgroundcolor = :black)
volume!(
scene,
r, r, r, # coordinates to plot on
ρ, # charge density (functions as colorant)
algorithm = :mip # maximum-intensity-projection
)
scene[Axis].names.textcolor = :gray # let axis labels be seen on dark
background
save("sp.png",scene)
I want to see the yellow region moving.
How should I fix the code?
P.S.
I posted the same question on stack overflow but I was recommended to use this place.
So I re-posted the question here.