I’m trying to reproduce the Lorenz attractor simulation from here:

feature (scroll to the third example)

and I feel like this should be easier or at least there should exist a better solution. In Gnuplot.jl we have the option of plot every #number of frames, so that things could be faster and smooth, I would like to see also that here in Makie. so far, this what I have, (How to get rid off most Nodes definitions and do everything in one call? )

```
using GLMakie, DifferentialEquations, ParameterizedFunctions
GLMakie.activate!()
let
g = @ode_def begin
dx = σ*(y - x)
dy = x*(ρ - z) - y
dz = x*y - β*z
end σ ρ β
u0 = [1.0; 0.0; 0.0]
tspan = (0.0, 30.0)
p = [10.0,28.0,8/3]
prob = ODEProblem(g, u0, tspan, p)
sol = solve(prob, Tsit5(), saveat = 0.01)
x, y, z = sol[1,:], sol[2,:], sol[3,:]
tempo = sol.t
# leading point
xnodePt = Node([x[2]])
ynodePt = Node([y[2]])
znodePt = Node([z[2]])
# line
xnode = Node(x[1:2])
ynode = Node(y[1:2])
znode = Node(z[1:2])
tnode = Node(tempo[1:2])
# first frame (figure)
fig = Figure(resolution=(1000,600), fontsize = 20)
ax = Axis3(fig, aspect = (1,1,0.5), azimuth = -0.3π, elevation = π/9)
pltobj = lines!(ax, xnode, ynode, znode, color = tnode, overdraw = false,
colormap = :plasma)
scatter!(ax, xnodePt, ynodePt, znodePt, markersize = 15, color = :red)
cbar = Colorbar(fig, pltobj, label = "time", width = 15, ticksize=15,
tickalign = 1, height = Relative(0.5))
fig[1,1] = ax
fig[1,2] = cbar
# the animation is done by updating the nodes values
record(fig,joinpath(@__DIR__, "output", "animlorenzAttractor.mp4"), framerate = 24*8) do io
for i in 3:length(tempo)
push!(xnode[], x[i])
push!(ynode[], y[i])
push!(znode[], z[i])
tnode[] = tempo[1:i]
xnodePt[] = [x[i]]
ynodePt[] = [y[i]]
znodePt[] = [z[i]]
xnode[] = xnode[] # trigger all updates for the new frame, again?
autolimits!(ax)
recordframe!(io) # record a new frame
end
end
end
```