Type error while using Scikit-learn and PyCall for logistic regression

Hi,

I have been trying to change a python code into Julia and when trying to fit the Logisic regression model using:

@sk_import linear_model: LogisticRegression
model = fit!(LogisticRegression(multi_class=“multinomial”), X_train, y_train)

I am getting the following error.

PyError ($(Expr(:escape, :(ccall(#= /home/ajay/.julia/packages/PyCall/ttONZ/src/pyfncall.jl:44 =# @pysym(:PyObject_Call), PyPtr, (PyPtr, PyPtr, PyPtr), o, pyargsptr, kw))))) <class ‘TypeError’>
TypeError(“float() argument must be a string or a number, not ‘PyCall.jlwrap’”,)
File “/home/ajay/.local/lib/python3.5/site-packages/sklearn/linear_model/logistic.py”, line 1532, in fit
accept_large_sparse=solver != ‘liblinear’)
File “/home/ajay/.local/lib/python3.5/site-packages/sklearn/utils/validation.py”, line 719, in check_X_y
estimator=estimator)
File “/home/ajay/.local/lib/python3.5/site-packages/sklearn/utils/validation.py”, line 496, in check_array
array = np.asarray(array, dtype=dtype, order=order)
File “/home/ajay/.local/lib/python3.5/site-packages/numpy/core/numeric.py”, line 538, in asarray
return array(a, dtype, copy=False, order=order)

Stacktrace:
[1] pyerr_check at /home/ajay/.julia/packages/PyCall/ttONZ/src/exception.jl:60 [inlined]
[2] pyerr_check at /home/ajay/.julia/packages/PyCall/ttONZ/src/exception.jl:64 [inlined]
[3] macro expansion at /home/ajay/.julia/packages/PyCall/ttONZ/src/exception.jl:84 [inlined]
[4] __pycall!(::PyObject, ::Ptr{PyCall.PyObject_struct}, ::PyObject, ::Ptr{Nothing}) at /home/ajay/.julia/packages/PyCall/ttONZ/src/pyfncall.jl:44
[5] _pycall!(::PyObject, ::PyObject, ::Tuple{SubDataFrame{DataFrame,DataFrames.Index,Array{Int64,1}},SubArray{Int64,1,CSV.Column{Int64,Int64},Tuple{Array{Int64,1}},false}}, ::Int64, ::Ptr{Nothing}) at /home/ajay/.julia/packages/PyCall/ttONZ/src/pyfncall.jl:29
[6] _pycall!(::PyObject, ::PyObject, ::Tuple{SubDataFrame{DataFrame,DataFrames.Index,Array{Int64,1}},SubArray{Int64,1,CSV.Column{Int64,Int64},Tuple{Array{Int64,1}},false}}, ::Base.Iterators.Pairs{Union{},Union{},Tuple{},NamedTuple{(),Tuple{}}}) at /home/ajay/.julia/packages/PyCall/ttONZ/src/pyfncall.jl:11
[7] #call#111(::Base.Iterators.Pairs{Union{},Union{},Tuple{},NamedTuple{(),Tuple{}}}, ::PyObject, ::SubDataFrame{DataFrame,DataFrames.Index,Array{Int64,1}}, ::Vararg{Any,N} where N) at /home/ajay/.julia/packages/PyCall/ttONZ/src/pyfncall.jl:89
[8] (::PyObject)(::SubDataFrame{DataFrame,DataFrames.Index,Array{Int64,1}}, ::Vararg{Any,N} where N) at /home/ajay/.julia/packages/PyCall/ttONZ/src/pyfncall.jl:89
[9] #fit!#31(::Base.Iterators.Pairs{Union{},Union{},Tuple{},NamedTuple{(),Tuple{}}}, ::Function, ::PyObject, ::SubDataFrame{DataFrame,DataFrames.Index,Array{Int64,1}}, ::Vararg{Any,N} where N) at /home/ajay/.julia/packages/ScikitLearn/HK6Vs/src/Skcore.jl:100
[10] fit!(::PyObject, ::SubDataFrame{DataFrame,DataFrames.Index,Array{Int64,1}}, ::SubArray{Int64,1,CSV.Column{Int64,Int64},Tuple{Array{Int64,1}},false}) at /home/ajay/.julia/packages/ScikitLearn/HK6Vs/src/Skcore.jl:100
[11] top-level scope at In[57]:1

The dataset I am using has no missing values and all the columns are either Integers or Float data type.

Can anyone help me with figuring out how to rectify the above mentioned error?

Thanks