All math performed with floating-point numbers is subject to some degree of round-off and approximation. The inverse of your matrix is not perfectly symmetric, but it is very close:
julia> minv = inv(mat)
6×6 Array{Float64,2}:
1.18147 -0.502645 0.1883 -0.0692716 0.0250252 -0.0079607
-0.502645 1.39526 -0.582587 0.217304 -0.0786496 0.0250252
0.1883 -0.582587 1.42474 -0.59216 0.217304 -0.0692716
-0.0692716 0.217304 -0.59216 1.42474 -0.582587 0.1883
0.0250252 -0.0786496 0.217304 -0.582587 1.39526 -0.502645
-0.0079607 0.0250252 -0.0692716 0.1883 -0.502645 1.18147
julia> minv - minv'
6×6 Array{Float64,2}:
0.0 -1.11022e-16 2.77556e-17 4.16334e-17 -1.04083e-17 3.46945e-18
1.11022e-16 0.0 -1.11022e-16 -5.55112e-17 1.38778e-17 -3.46945e-18
-2.77556e-17 1.11022e-16 0.0 2.22045e-16 -8.32667e-17 1.38778e-17
-4.16334e-17 5.55112e-17 -2.22045e-16 0.0 1.11022e-16 -5.55112e-17
1.04083e-17 -1.38778e-17 8.32667e-17 -1.11022e-16 0.0 0.0
-3.46945e-18 3.46945e-18 -1.38778e-17 5.55112e-17 0.0 0.0