Hi Experts ,I’m just start studing Julia. But I’m in truble.
Berrow 2D turblence simulation code is that I translated from Matlab. But It is not working well, very slow and use a lot of memory so I couldn’t run 3D version.
I would like to borrow your help.
using FFTW
using Printf
using LinearAlgebra
using Plots
using MAT
set parameters
N = 128 ; # N*N grid,
dt = 0.02 ; # timestep
simutimeSeconds = 10 ;
HowOftenSave = 10 ; # save velocity field per ‘HowOftenSave’ timesteps
HowOftenVisu = 10 ; # show illustration per ‘HowOftenVisu’ timesteps
simutimeSteps = round(simutimeSeconds/dt);
nu = 1/1000 ; # kinematic viscosity [nu] = m^2/s
L = 2*pi ; # domain side length
dx = L/N ; # grid spacing assumed dx=dy
Umax = 1 ;
F_0 = 0.03 ; ;
create fields
x = (L-dx)(0:(N-1))/(N-1) ; # to be precise, dx is subtracted here
y = (L-dx)(0:(N-1))/(N-1) ; # otherwise the derivative of e.g. sin(x) wouldnt be differentiable on this periodic grid
X=zeros(N,N);
Y=zeros(N,N);
for jx=1:N
for ix=1:N
X[ix,jx]=x[jx]
Y[ix,jx]=y[ix]
end
end
wavenumbers
kx1 = mod.(1/2 .+ (0:(N-1))/N, 1) .- 1/2;
ky1 = mod.(1/2 .+ (0:(N-1))/N, 1) .- 1/2;
kx = kx1*(2pi/dx); # wavenumbers
ky = ky1(2*pi/dx); # wavenumbers
KX=zeros(N,N);
KY=zeros(N,N);
for jkx=1:N
for ikx=1:N
KX[ikx,jkx]=kx[jkx]
KY[ikx,jkx]=ky[ikx]
end
end
Anti-aliasing filter based on the 2/3*kNyq rule
AA = (abs.(KX) .< (2/3) * maximum(kx)) .* (abs.(KY) .< (2/3) * maximum(ky))
Runge-Kutta 4 coefficients
a=[1/6 1/3 1/3 1/6]; b=[1/2 1/2 1 1];
#-- Taylor-Green --#
kmax = 4;
U = -Umax .* cos.(kmax .* X) .* sin.(kmax .* Y)
V = Umax .* sin.(kmax .* X) .* cos.(kmax .* Y)
U = U + randn(N,N)*F_0;
V = V + randn(N,N)*F_0;
Uhat = fft(U)
Vhat = fft(V)
Uhat = Uhat - (KX .* Uhat + KY .* Vhat) .* KX ./ (KX .^ 2 + KY .^ 2)
Uhat[isnan.(Uhat)] .= 0
Vhat = Vhat - (KX .* Uhat + KY .* Vhat) .* KY ./ (KX .^ 2 + KY .^ 2)
Vhat[isnan.(Vhat)] .= 0
matwrite(“uv0000.mat”, Dict(“U” => U, “V” => V));
Navier-Stokes simulation begins
@elapsed begin
for t=1:simutimeSteps
@printf(“| Time step # %0.4d |\n”,t)
#SolveNavierStokes2D;
Uold = Uhat;
Vold = Vhat;
Uc = Uhat;
Vc = Vhat;
for rk in 1:4
U = real.(ifft(AA .* Uc))
V = real.(ifft(AA .* Vc))
dUdx = real.(ifft(1im * KX .* AA .* Uc));
dUdy = real.(ifft(1im * KY .* AA .* Uc));
dVdx = real.(ifft(1im *KX .* AA .* Vc));
dVdy = real.(ifft(1im * KY .* AA .* Vc));
dUconv = fft(dt*(-U .* dUdx -V .* dUdy));
dVconv = fft(dt*(-U .* dVdx -V .* dVdy));
dUdiff = nu * dt * (-KX .* KX .* Uc - KY .* KY .* Uc);
dVdiff = nu * dt * (-KX .* KX .* Vc - KY .* KY .* Vc);
dU = dUconv + dUdiff;
dV = dVconv + dVdiff;
Uhat = Uhat-(KX.*Uhat + KY.*Vhat).*KX./(KX.^2 + KY.^2); Uhat[isnan.(Uhat)] .= 0;
Vhat = Vhat-(KX.*Uhat + KY.*Vhat).*KY./(KX.^2 + KY.^2); Vhat[isnan.(Vhat)] .= 0;
if rk < 4
Uhat = Uold + b[rk] * dU
Vhat = Vold + b[rk] * dV
end
Uc = Uc + a[rk] * dU
Vc = Vc + a[rk] * dV
end
Uhat = Uc
Vhat = Vc
Uhat = Uhat - (KX .* Uhat + KY .* Vhat) .* KX ./ (KX .^ 2 + KY .^ 2)
Uhat[isnan.(Uhat)] .= 0
Vhat = Vhat - (KX .* Uhat + KY .* Vhat) .* KY ./ (KX .^ 2 + KY .^ 2)
Vhat[isnan.(Vhat)] .= 0
U = real(ifft(Uhat));
V = real(ifft(Vhat));
# SaveInstantField2D
if mod(t, HowOftenSave) == 0
filename = "uv$(@sprintf("%04d", t)).mat"
matwrite(filename, Dict("U" => U, "V" => V))
end
end
end