From the doc string, it seems like vote_threshold
is
julia> minimum(size(tf)) / stepsize -1
1919.0
if the stepsize
is 1. So I assumed it can be large too.
In any case, I tried with 0 to 1:
julia> for i in 0:0.1:1
@show hough_transform_standard(tf, max_linecount = 3, stepsize = 2, vote_threshold = i)
end
hough_transform_standard(tf, max_linecount = 3, stepsize = 2, vote_threshold = i) = [(1059.0, 0.6204604563369107), (1053.0, 0.6286459504838356), (1059.0, 0.6253717528250656)]
hough_transform_standard(tf, max_linecount = 3, stepsize = 2, vote_threshold = i) = [(1059.0, 0.6204604563369107), (1053.0, 0.6286459504838356), (1059.0, 0.6253717528250656)]
hough_transform_standard(tf, max_linecount = 3, stepsize = 2, vote_threshold = i) = [(1059.0, 0.6204604563369107), (1053.0, 0.6286459504838356), (1059.0, 0.6253717528250656)]
hough_transform_standard(tf, max_linecount = 3, stepsize = 2, vote_threshold = i) = [(1059.0, 0.6204604563369107), (1053.0, 0.6286459504838356), (1059.0, 0.6253717528250656)]
hough_transform_standard(tf, max_linecount = 3, stepsize = 2, vote_threshold = i) = [(1059.0, 0.6204604563369107), (1053.0, 0.6286459504838356), (1059.0, 0.6253717528250656)]
hough_transform_standard(tf, max_linecount = 3, stepsize = 2, vote_threshold = i) = [(1059.0, 0.6204604563369107), (1053.0, 0.6286459504838356), (1059.0, 0.6253717528250656)]
hough_transform_standard(tf, max_linecount = 3, stepsize = 2, vote_threshold = i) = [(1059.0, 0.6204604563369107), (1053.0, 0.6286459504838356), (1059.0, 0.6253717528250656)]
hough_transform_standard(tf, max_linecount = 3, stepsize = 2, vote_threshold = i) = [(1059.0, 0.6204604563369107), (1053.0, 0.6286459504838356), (1059.0, 0.6253717528250656)]
hough_transform_standard(tf, max_linecount = 3, stepsize = 2, vote_threshold = i) = [(1059.0, 0.6204604563369107), (1053.0, 0.6286459504838356), (1059.0, 0.6253717528250656)]
hough_transform_standard(tf, max_linecount = 3, stepsize = 2, vote_threshold = i) = [(1059.0, 0.6204604563369107), (1053.0, 0.6286459504838356), (1059.0, 0.6253717528250656)]
hough_transform_standard(tf, max_linecount = 3, stepsize = 2, vote_threshold = i) = [(1059.0, 0.6204604563369107), (1053.0, 0.6286459504838356), (1059.0, 0.6253717528250656)]
and for larger magnitudes of vote_threshold
:
julia> for i in range(1, 1919, length = 10)
@show hough_transform_standard(tf, max_linecount = 3, stepsize = 2, vote_threshold = i)
end
hough_transform_standard(tf, max_linecount = 3, stepsize = 2, vote_threshold = i) = [(1059.0, 0.6204604563369107), (1053.0, 0.6286459504838356), (1059.0, 0.6253717528250656)]
hough_transform_standard(tf, max_linecount = 3, stepsize = 2, vote_threshold = i) = [(1059.0, 0.6204604563369107), (1053.0, 0.6286459504838356), (1059.0, 0.6253717528250656)]
hough_transform_standard(tf, max_linecount = 3, stepsize = 2, vote_threshold = i) = [(1059.0, 0.6204604563369107), (1053.0, 0.6286459504838356), (1059.0, 0.6253717528250656)]
hough_transform_standard(tf, max_linecount = 3, stepsize = 2, vote_threshold = i) = [(1059.0, 0.6204604563369107), (1053.0, 0.6286459504838356), (1059.0, 0.6253717528250656)]
hough_transform_standard(tf, max_linecount = 3, stepsize = 2, vote_threshold = i) = [(1059.0, 0.6204604563369107), (1053.0, 0.6286459504838356), (1059.0, 0.6253717528250656)]
hough_transform_standard(tf, max_linecount = 3, stepsize = 2, vote_threshold = i) = [(1059.0, 0.6204604563369107), (1053.0, 0.6286459504838356), (1059.0, 0.6253717528250656)]
hough_transform_standard(tf, max_linecount = 3, stepsize = 2, vote_threshold = i) = [(1059.0, 0.6204604563369107), (1053.0, 0.6286459504838356), (1059.0, 0.6253717528250656)]
hough_transform_standard(tf, max_linecount = 3, stepsize = 2, vote_threshold = i) = Tuple{Float64,Float64}[]
hough_transform_standard(tf, max_linecount = 3, stepsize = 2, vote_threshold = i) = Tuple{Float64,Float64}[]
hough_transform_standard(tf, max_linecount = 3, stepsize = 2, vote_threshold = i) = Tuple{Float64,Float64}[]
I don’t even know what vote_threshold
does exactly.