Hi all,
I want to get the numerical answer of the area integral.
the curve is y =( x^6 + 2)/(8x^2) with 1 \le x \le 3, revolved about x-axis.
the formula is:
A = 2 \pi * \int_{a}^{b} f(x) * \sqrt{1 + f'(x)} dx
Julia code:
using SymPy
x = symbols("x")
f(x) = (x^6 + 2)/(8x^2)
g(x) = sqrt(1 + diff(f(x),x))
h = 2pi*integrate(((x^6 + 2)/(8x^2))*sqrt(1 + diff(f(x),x)), (x, 1, 3))
d = simplify(h)
the result is in this form:
with Python 3.9:
import sympy as sy
x = sy.Symbol("x")
def f(x):
return ((x**6) + 2)/ (8*x ** 2)
def fd(x):
return sy.simplify(sy.diff(f(x), x))
def f2(x):
return sy.sqrt((1 + (fd(x)**2)))
def vx(x):
return 2*np.pi*(f(x)*((1 + (fd(x) ** 2))**(1/2)))
vx = sy.simplify(sy.integrate(vx(x), (x, 1, 3)))
the result is like this:
is this integral of area of surface too hard to be computed?