Hi all,
I just want to know why the solution in the manual for number 17 and 18 are different with the one I computed with Julia?
using SymPy
@syms x, v, z, t
v1(v) = (6v+9)/(3v^2 + 9v)
v2(z) = z/(2z^2 + 8)
v3(x) = (2*log(x))/x
v4(x) = -1/(x*log(x)^2)
v5(x) = (x^4)/(2x^5 + pi)
v6(t) = (t+1)/(2t^2 + 4t + 3)
v7(x) = (x^2)/(x-1)
v8(x) = (x^2 + x)/(2x - 1)
v9(x) = (x^4)/(x + 4)
v10(x) = (x^3 + x^2)/(x + 2)
V1 = integrate((v1(v)), (v))
V2 = integrate((v2(z)), (z))
V3 = integrate((v3(x)), (x))
V4 = integrate((v4(x)), (x))
V5 = integrate((v5(x)), (x, 0, 3))
V6 = integrate((v6(t)), (t, 0, 1))
V7 = integrate((v7(x)), (x))
V8 = integrate((v8(x)), (x))
V9 = integrate((v9(x)), (x))
V10 = integrate((v10(x)), (x))
println("Computing symbolic integral and definite integral")
println("a. ", V1)
println("b. ", V2)
println("c. ", V3)
println("d. ", V4)
print("e. ", V5)
println(" = ", V5.evalf())
print("f. ", V6)
println(" = ", V6.evalf())
println("g. ", V7)
println("h. ", V8)
println("i. ", V9)
println("j. ", V10)
why the integral of SymPy does not have + C
?