So funny thing here: Even the fixed CUBLAS.gels_batched!
is slower than the threaded CPU baseline. However, I was able to stitch together code snippets of other batched solution methods to get a nice performance bump. Note that the arrays above are of heterogeneous height, so I had to write a routine to pad each array with zeros.
#code is borrowed liberally from CUDA.jl/lib/cusolver/wrappers.jl
# and CUDA.jl/lib/cublas/wrappers.jl
for (rfname, rsname, T) in
((:cusolverDnSpotrfBatched,:cusolverDnSpotrsBatched,:Float32),
(:cusolverDnDpotrfBatched,:cusolverDnDpotrsBatched,:Float64))
@eval begin
function hyperreg(X::Vector{<:CuMatrix{$T}},
y::Vector{<:CuMatrix{$T}})
cuuplo = CUDA.CUBLAS.cublasfill('U')
if length(X) != length(y)
throw(DimensionMismatch(""))
end
mx,nx = size(X[1])
my,ny = size(y[1])
if mx != my
throw(ArgumentError("X Matrix must have same num of rows as y matrix"))
end
for (Xs, ys) in zip(X,y)
if (size(Xs) != (mx, nx)) || (size(ys) != (my, ny))
throw(DimensionMismatch("Dimensions of batched array entries must be invariant"))
end
end
A = CUDA.CUBLAS.gemm_batched('T','N', X, X) #X'X
B = CUDA.CUBLAS.gemm_batched('T','N', X, y) #X'y
#Here we compute cholesky!(X'X)
n = size(A[1],1)
lda = max(1,stride(A[1],2))
Aptrs = CUDA.CUBLAS.unsafe_batch(A)
info = zero(Cint)
infoarray = CUDA.zeros(Cint, length(A))
CUDA.CUSOLVER.$rfname(
CUDA.CUSOLVER.dense_handle(), cuuplo, n, Aptrs, lda, infoarray, length(A))
if info != 0
throw(ArgumentError,string("Invalid value at ",-info))
end
# now solve C\(X'y) where C is the cholesky decomposition computed above
nrhs = size(B[1])[2]
ldb = max(1,stride(B[1],2))
Bptrs = CUDA.CUBLAS.unsafe_batch(B)
info = zero(Cint)
infoarray = CUDA.zeros(Cint, length(A))
CUDA.CUSOLVER.$rsname(
CUDA.CUSOLVER.dense_handle(), cuuplo, n, nrhs, Aptrs, lda, Bptrs, ldb, infoarray, length(A))
CUDA.CUSOLVER.unsafe_free!(Aptrs)
CUDA.CUSOLVER.unsafe_free!(Bptrs)
if info != 0
throw(ArgumentError,string("Invalid value at ",-info))
end
B
end end end
function pad0(M::TM, trows::Int, ::Type{T} = eltype(TM)) where {TM<:AbstractMatrix, T}
padded = vcat(M, TM(zeros(T, trows-size(M,1), size(M,2))))
sM = view(padded, 1:size(M,1), 1:size(M,2))
return (sM, padded)
end
function pad0(V::TV, trows::Int, ::Type{T} = eltype(TV)) where {TV<:AbstractVector, T}
padded = vcat(V, TV(zeros(T, trows-length(V))))
sV = view(padded, 1:length(V))
return (sV, padded)
end
function manyregmwe(T=1000,N=5000,K=10)
#generate the data
manysmallX = [rand(rand((N÷2):N),K) for i in 1:T]
manysmally = [rand(size(x,1)) for x in manysmallX]
linest(X,y) = cholesky!(X'*X) \ (X'*y)
bs = [Vector{Float64}(undef, K) for i in 1:T]
#cpu version
function cpurunreg()
Threads.@threads for i in 1:T
@inbounds bs[i] .= linest(manysmallX[i], manysmally[i])
end
end
manysmallXcu = cu.((X->pad0(X,N)[2]).(manysmallX))
manysmallycu = cu.((y->Matrix(reshape(pad0(y,N)[2], N, 1))).(manysmally))#cu.(manysmally)
function gpurunreg()
bscu = hyperreg(manysmallXcu,manysmallycu)
return bscu
end
cpurunreg()
ys = gpurunreg()
@info("cpu1: ")
@btime $cpurunreg()
@info("gpu: ")
@btime $gpurunreg()
#make sure the solutions are equivelent
cpusol = reduce(hcat, bs)
gpusol = reduce(hcat, vec.(Matrix.(ys)))
cpusol ≈ gpusol || error("cpu ≠ gpu")
return nothing
end
manyregmwe()
Output:
[ Info: cpu1:
18.275 ms (7038 allocations: 1.27 MiB)
[ Info: gpu:
3.965 ms (16141 allocations: 490.14 KiB)