Iโm quite new to CUDA programming with Julia. I have been trying to write a CUDA kernel for doing a simple 1D interpolation on a uniform logarithmic grid - here is the function:
function CUDA_interpolate!(out,ydata,E)
# Note: Emag needs to be going in here, to ensure we are within bounds
# (we'll be doing Emag as part of the full, fused kernel)
# compute index and stride:
index = (blockIdx().x - 1) * blockDim().x + threadIdx().x
stride = gridDim().x * blockDim().x
for i = index:stride:length(out)
# do the interpolation
@inbounds begin
Elog = log10(E[i])
node_a = Int(cld(((Elog) - -3.05),0.0025))
# limit node_a, to prevent OOB error if E is too large:
if Elog > 2.0
node_a = length(ydata) - 1
end
out[i] = ydata[node_a] + (Elog + 3.05 - ((node_a - 1) * 0.0025))*(ydata[node_a+1] - ydata[node_a])/(0.0025)
# modify output if Elog is 'OOB':
if Elog < -3.05
out[i] = ydata[1]
end
end
end
return nothing
end
However, it seems to be scaling poorly as I increase the size of the array I am interpolating over. When E is length 2000, the kernel is benchmarking at around 11 us:
Loading packages...
Initializing streamer params ...
Creating GPU arrays.
Compiling kernel.
For this GPU kernel, we need 2 blocks, with 1024 threads each.
The error 2-norm is 0.07131546503928046.
Benchmarking the CPU method:
BenchmarkTools.Trial: 10000 samples with 1 evaluation.
Range (min โฆ max): 18.402 ฮผs โฆ 60.124 ฮผs โ GC (min โฆ max): 0.00% โฆ 0.00%
Time (median): 18.649 ฮผs โ GC (median): 0.00%
Time (mean ยฑ ฯ): 18.792 ฮผs ยฑ 1.449 ฮผs โ GC (mean ยฑ ฯ): 0.00% ยฑ 0.00%
โโโ
โโโโโโโ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ
18.4 ฮผs Histogram: frequency by time 21.7 ฮผs <
Memory estimate: 15.81 KiB, allocs estimate: 1.
Benchmarking the GPU method:
BenchmarkTools.Trial: 10000 samples with 1 evaluation.
Range (min โฆ max): 10.659 ฮผs โฆ 36.889 ฮผs โ GC (min โฆ max): 0.00% โฆ 0.00%
Time (median): 10.941 ฮผs โ GC (median): 0.00%
Time (mean ยฑ ฯ): 11.030 ฮผs ยฑ 1.039 ฮผs โ GC (mean ยฑ ฯ): 0.00% ยฑ 0.00%
โโโโโโโ
โโโ โโโ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ
โโโโโโโโโโโโโโโโโโโโโ โ
10.7 ฮผs Histogram: frequency by time 11.5 ฮผs <
Memory estimate: 1.16 KiB, allocs estimate: 22.
Profiler ran for 48.16 ยตs, capturing 46 events.
Host-side activity: calling CUDA APIs took 21.22 ยตs (44.06% of the trace)
โโโโโโฌโโโโโโโโโโโฌโโโโโโโโโโโโฌโโโโโโโโโโโโโโโโโโโโโโ
โ ID โ Start โ Time โ Name โ
โโโโโโผโโโโโโโโโโโผโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโโค
โ 2 โ 21.22 ยตs โ 16.45 ยตs โ cuLaunchKernel โ
โ 44 โ 45.54 ยตs โ 715.26 ns โ cuStreamSynchronize โ
โโโโโโดโโโโโโโโโโโดโโโโโโโโโโโโดโโโโโโโโโโโโโโโโโโโโโโ
Device-side activity: GPU was busy for 8.34 ยตs (17.33% of the trace)
โโโโโโฌโโโโโโโโโโโฌโโโโโโโโโโฌโโโโโโโโโโฌโโโโโโโโโฌโโโโโโโฌโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ ID โ Start โ Time โ Threads โ Blocks โ Regs โ Name โฏ
โโโโโโผโโโโโโโโโโโผโโโโโโโโโโผโโโโโโโโโโผโโโโโโโโโผโโโโโโโผโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ 2 โ 36.24 ยตs โ 8.34 ยตs โ 1024 โ 2 โ 32 โ _Z17CUDA_interpolate_13CuDeviceArrayI7Float32Li1 โฏ
โโโโโโดโโโโโโโโโโโดโโโโโโโโโโดโโโโโโโโโโดโโโโโโโโโดโโโโโโโดโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
However, when I increase the E input array size to closer to 10 million, it takes a lot longer (2.6 ms):
Loading packages...
Initializing streamer params ...
Creating GPU arrays.
Compiling kernel.
For this GPU kernel, we need 9766 blocks, with 1024 threads each.
The error 2-norm is 4.985414333197956.
Benchmarking the CPU method:
BenchmarkTools.Trial: 52 samples with 1 evaluation.
Range (min โฆ max): 95.782 ms โฆ 102.007 ms โ GC (min โฆ max): 0.00% โฆ 5.50%
Time (median): 96.279 ms โ GC (median): 0.00%
Time (mean ยฑ ฯ): 97.418 ms ยฑ 1.812 ms โ GC (mean ยฑ ฯ): 1.33% ยฑ 1.82%
โโโโโโโ โ โโ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ
95.8 ms Histogram: frequency by time 100 ms <
Memory estimate: 76.29 MiB, allocs estimate: 2.
Benchmarking the GPU method:
BenchmarkTools.Trial: 1888 samples with 1 evaluation.
Range (min โฆ max): 2.610 ms โฆ 2.682 ms โ GC (min โฆ max): 0.00% โฆ 0.00%
Time (median): 2.643 ms โ GC (median): 0.00%
Time (mean ยฑ ฯ): 2.644 ms ยฑ 4.568 ฮผs โ GC (mean ยฑ ฯ): 0.00% ยฑ 0.00%
โโโโโ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ
2.61 ms Histogram: frequency by time 2.67 ms <
Memory estimate: 1.19 KiB, allocs estimate: 24.
Profiler ran for 2.78 ms, capturing 520 events.
Host-side activity: calling CUDA APIs took 2.5 ms (89.91% of the trace)
โโโโโโโฌโโโโโโโโโโโโฌโโโโโโโโโโโฌโโโโโโโโโฌโโโโโโโโโโโโโโโโโโโโโโ
โ ID โ Start โ Time โ Thread โ Name โ
โโโโโโโผโโโโโโโโโโโโผโโโโโโโโโโโผโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโโค
โ 2 โ 21.7 ยตs โ 17.64 ยตs โ 1 โ cuLaunchKernel โ
โ 518 โ 223.16 ยตs โ 2.5 ms โ 2 โ cuStreamSynchronize โ
โโโโโโโดโโโโโโโโโโโโดโโโโโโโโโโโดโโโโโโโโโดโโโโโโโโโโโโโโโโโโโโโโ
Device-side activity: GPU was busy for 2.68 ms (96.47% of the trace)
โโโโโโฌโโโโโโโโโโโฌโโโโโโโโโโฌโโโโโโโโโโฌโโโโโโโโโฌโโโโโโโฌโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ ID โ Start โ Time โ Threads โ Blocks โ Regs โ Name โฏ
โโโโโโผโโโโโโโโโโโผโโโโโโโโโโผโโโโโโโโโโผโโโโโโโโโผโโโโโโโผโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ 2 โ 38.86 ยตs โ 2.68 ms โ 1024 โ 9766 โ 32 โ _Z17CUDA_interpolate_13CuDeviceArrayI7Float32Li1 โฏ
โโโโโโดโโโโโโโโโโโดโโโโโโโโโโดโโโโโโโโโโดโโโโโโโโโดโโโโโโโดโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
In this case, the number of blocks has been increased, so that I still (apparently) have a dedicated thread for each array entry, so I am confused as to why it is taking so much longer to compute. I could understand some increased overhead in coordinating 10 million GPU threads, rather than 2000, but with this scaling, there seems to be minimal benefit to adding all those threads. I am sure there is something I am missing - where is the time going here?
(note that this is using a GTX 1080ti and I am using Float32s)