Thank you very much for the prompt response. I have written a minimal boundary element method code for a 2D sine wave. It solves the Stokes equation using boundary integral formulation.
Are you saying I will not benefit from parallelising the for-loops or storing the matrix RM
in different processors when it gets too large, like (40,000 x 40,000) or so?
julia> include("filamentstokesserial.jl"); @btime filamentefficiency(2^8,20,[1.00, -0.01, 0.01, 0.005, 0.015, -0.008],0)
42.376 ms (56 allocations: 4.07 MiB)
0.009152331502935747
using FastGaussQuadrature,
Plots, LinearAlgebra, BenchmarkTools, TimerOutputs, StaticArrays
function sgf_3d_fs(x, y, z, x0, y0, z0)
dx = x - x0
dy = y - y0
dz = z - z0
dxx = dx^2
dxy = dx * dy
dxz = dx * dz
dyy = dy^2
dyz = dy * dz
dzz = dz^2
r = sqrt(dxx + dyy + dzz)
r3 = r * r * r
ri = 1.0 / r
ri3 = 1.0 / r3
g11 = ri + dxx * ri3
g12 = dxy * ri3
g13 = dxz * ri3
g21 = g12
g22 = ri + dyy * ri3
g23 = dyz * ri3
g31 = g13
g32 = g23
g33 = ri + dzz * ri3
GEk = @SMatrix [
g11 g12 g13
g21 g22 g23
g31 g32 g33
]
return GEk
end
function inner_loop(xc, yc, tcx, tcy, sc, x1, y1, x2, y2, s1, s2, xg, wg, ng)
# x1,y1,x2,y2 are coordinates of element j with nodes at j and j+1
# xc, yc are the coordinates of collocation point
GE = zeros(SMatrix{3,3,Float64})
GEself = zeros(SMatrix{3,3,Float64})
d = 0.001 # regularisation parameter
@inbounds @simd for k = 1:ng
xi = xg[k]
xint = 0.5 * ((x2 + x1) + (x2 - x1) * xi)
yint = 0.5 * ((y2 + y1) + (y2 - y1) * xi)
sint = 0.5 * ((s2 + s1) + (s2 - s1) * xi)
hl = 0.5 * sqrt((x2 - x1)^2 + (y2 - y1)^2)
# Call Green's function for Stokes equation
GEk = sgf_3d_fs(xint, yint, 0, xc, yc, 0) # two dimensional problem: z=0
# REDUCE ME
GE += GEk * hl * wg[k]
ds = abs(sc - sint)
dss = sqrt(ds^2 + d^2)
Gs11 = ((1.0 + tcx * tcx) / dss) * hl * wg[k]
Gs12 = ((0.0 + tcx * tcy) / dss) * hl * wg[k]
Gs21 = ((0.0 + tcy * tcx) / dss) * hl * wg[k]
Gs22 = ((1.0 + tcy * tcy) / dss) * hl * wg[k]
# REDUCE ME
GEself += @SMatrix [
Gs11 Gs12 0
Gs21 Gs22 0
0 0 0
]
end
return GE, GEself
end
function outer_middle_loops(
xm,
ym,
tmx,
tmy,
sm,
vm,
ls,
s,
c,
x,
y,
xg,
wg,
ng,
nx,
)
# Initialize the matrix and right hand side
RM = zeros(2 * (nx - 1) + 1, 2 * (nx - 1) + 1)
rhs = zeros(2 * (nx - 1) + 1, 1)
for j = 1:nx-1 # looping over columns first
j1 = (j - 1) * 2 + 1
j2 = (j - 1) * 2 + 2
tcx = tmx[j]
tcy = tmy[j]
# Local operator terms( \Lambda [f_h] )
# REDUCE ME
RM[j1, j1] += -(1 * (2 - c) - tcx * tcx * (c + 2)) / 8π
RM[j1, j2] += -(0 * (2 - c) - tcx * tcy * (c + 2)) / 8π
RM[j2, j1] += -(0 * (2 - c) - tcy * tcx * (c + 2)) / 8π
RM[j2, j2] += -(1 * (2 - c) - tcy * tcy * (c + 2)) / 8π
rhs[j1] = 0
rhs[j2] = vm[j]
RM[2*(nx-1)+1, j1] = ls[j]
RM[j1, 2*(nx-1)+1] = 1
for i = 1:nx-1
i1 = (i - 1) * 2 + 1
i2 = (i - 1) * 2 + 2
xc = xm[i]
yc = ym[i]
tcx = tmx[i]
tcy = tmy[i]
sc = sm[i]
# Single element k-Loop Integration using quadratures
GE, GEself = inner_loop(
xc,
yc,
tcx,
tcy,
sc,
x[j],
y[j],
x[j+1],
y[j+1],
s[j],
s[j+1],
xg,
wg,
ng,
)
# Non-local operator terms( K [f_h] )
# REDUCE ME
RM[i1, j1] += GE[1, 1] / 8π
RM[i1, j2] += GE[1, 2] / 8π
RM[i2, j1] += GE[2, 1] / 8π
RM[i2, j2] += GE[2, 2] / 8π
RM[i1, i1] += -GEself[1, 1] / 8π
RM[i1, i2] += -GEself[1, 2] / 8π
RM[i2, i1] += -GEself[2, 1] / 8π
RM[i2, i2] += -GEself[2, 2] / 8π
end
end
return RM, rhs
end
function filamentefficiency(nx, ng, A, t)
# Empty grad vector
# Specify the number of nodes
# nx = 101
# Note that the number of elements = nx-1
# How many points needed for integration using Gauss Quadrature?
# ng = 20
# Specify the odd-numbered mo20
# A = [1.0045792982170993, -0.009331896288504353, 0.011941839033552903, 0.004696343389728706, 0.015159353628757498, -0.0017903083000960515, -0.002894232919948337, -0.020512982818940012, 0.002637764690195105, -0.004037513173757581, -0.0018003802187872722, 3.678005969005036e-5, -0.0014290163838325764, 0.006142381043574873, -0.004210790695122118, 0.011885762061040916, -0.010245776149711871, -0.0023350247253041455, 0.9906425306905926, 0.0064477708652553225]
# time
# t = 0
# Points and weights "using FastGaussQuadrature"
xg, wg = gausslegendre(ng)
# Generate a sin curve
# x and y are nodes while x_m and y_m are mid points of an element
x = LinRange(-π, π, nx)
nm = 1:1:length(A)
y = (sin.((x .- t) .* (2nm' .- 1))) * A #(Only odd numbered modes)
# Mid-points (collocation points) and tangents at the mid points.
xm = 0.5 * (x[2:nx] .+ x[1:nx-1])
ym = 0.5 * (y[2:nx] .+ y[1:nx-1])
ls = sqrt.((x[2:nx] .- x[1:nx-1]) .^ 2 .+ (y[2:nx] .- y[1:nx-1]) .^ 2) # length of each element
tmx = (x[2:nx] .- x[1:nx-1]) ./ ls
tmy = (y[2:nx] .- y[1:nx-1]) ./ ls
sqrt.(tmx .^ 2 + tmy .^ 2)
# Arc length of node points
s = zeros(nx, 1)
for i = 1:nx-1
s[i+1] = s[i] + ls[i]
end
# Arc length of mid points
sm = 0.5 * (s[2:nx] .+ s[1:nx-1])
# Filament velocity at mid points (forcing for the equations)
vm = (-(2nm' .- 1) .* cos.((xm .- t) .* (2nm' .- 1))) * A
ρ = 0.001
c = 2 * log(ρ / s[nx]) + 1
RM, rhs = outer_middle_loops(
xm,
ym,
tmx,
tmy,
sm,
vm,
ls,
s,
c,
x,
y,
xg,
wg,
ng,
nx,
)
fh = RM \ rhs
Effc = -(fh[2*(nx-1)+1])^2 / (sum(fh[2:2:2*(nx-1)] .* ls .* vm))
return Effc
# println("The x-velocity is ", fh[2*(nx-1)+1])
# display(plot(x,y, aspect_ratio=:equal))
#display(quiver!(xm,ym,quiver=(tmx,tmy), aspect_ratio=:equal))
end