This is Edgar a completely newbie in Julia that has been looking for an alternative to R and Matlab for solving optimization problems. After reading some examples available at JuliaOpt I think that is the right tool for solving my problem. However I did not fin anything relating with my specific question mentioned in the title.
Giving some context I am trying to solve the unit commitment problem . Lets denote G as the set containing generator g=1,2… and T the set containing the number of periods t=1,2… of the optimization.
My problem is that despite of having defined my objetive function (which is basically the fuel costs + the startup/shutdown costs) and the prediction of all my constrains (which basically are the power demand + the maximum available capacity depending on the weather conditions) I do not know how to implement that my lower and upper bounds of the problem (min and max capacity) are changing over the time. Basically I want to implement that:
Hi,
I think JuMP might be a better tool for the Unit Commitment problem, you’re going to use binary variables and will want to define your constraints in a convenient way. Give it a try with a MILP solver like Cbc or GLPK.
# add the required packages
Pkg.add("JuMP")
Pkg.add("Cbc")
# import into working environment
using JuMP
using Cbc: CbcSolver
# start playing
I did not express myself correctly. I was saying that Julia will be a better tool than R. For the moment all the pre-built optimization packages that I have tried (NLoptr, ROI, NlcOptim etc) did not allow these options. My original idea was to implement the lagrangian relaxation myselft (and I did it) but the program is quite slow and I have to select a duality gap to big.