The error of using GLPKMathProgInterface pkg

i have faced to this error in using GLPKMathProgInterface pkg please help me to fix that.
Failed to precompile GLPK [60bf3e95-4087-53dc-ae20-288a0d20c6a6]

Hi there!

Step 1: read Please read: make it easier to help you. In particular, please post what you have tried and the full print-out of the error.

Step 2: You should use GLPK instead of GLPKMathProgInterface (GLPKMathProgInterface was for an old release with JuMP). To use GLPK with JuMP 0.20, use:

import Pkg
Pkg.add("GLPK")
using JuMP
using GLPK
model = Model(with_optimizer(GLPK.Optimizer))
1 Like

I use this pkg (GLPKMathProgInterface) to get dual variables of master problem in column generation method. I send my codes for you. I did the way you suggested, but I faced the same error. (Failed to precompile GLPK [60bf3e95-4087-53dc-ae20-288a0d20c6a6])
using JuMP
using GLPKMathProgInterface
W=100
cardinalityM=5
M=[1:cardinalityM]
A=eye(cardinalityM)
p=zeros(5)
w=[11; 15; 19; 23; 27]
b=[97; 140; 191; 85; 129]
@time begin # time measurement begins
cutstockMain = Model() # Model for the master problem
Jprime=[1:size(A,2)] # Intial number of variables
@defVar(cutstockMain, 0 <= x[Jprime] <= 1000000) # Defining the variables
@setObjective(cutstockMain, Min, sum{1*x[j],j in Jprime}) # Setting the objective
@addConstraint(cutstockMain, consRef[i=1:cardinalityM], sum{A[i,j]*x[j], j in Jprime}==b[i])
solve(cutstockMain)
getDual(consRef)
for i in M
p[i] = getDual(consRef)[i]
end
cutstockSub=Model() # Model for the subproblem
@defVar(cutstockSub, 0 <= Ajstar[M] <= 1000000, Int )
@setObjective(cutstockSub, Min, 1-sum{p[i]*Ajstar[i],i in M})
@addConstraint(cutstockSub, sum{w[i]*Ajstar[i], i in M} <= W)
solve(cutstockSub)
minReducedCost=getObjectiveValue(cutstockSub)
Anew=Float64
for (i in 1:cardinalityM)
push!(Anew, getValue(Ajstar)[i])
end
xNewArray=Variable
k=1
while (minReducedCost < 0)
@defVar(cutstockMain, 0 <= xNew <= 1000000, objective=1, inconstraints=consRef, coefficients=Anew)
push!(xNewArray, xNew)
setName(xNew, string(“x[”,size(A,2)+k,“]”))
k=k+1
statusControlFlow=solve(cutstockMain)
getDual(consRef)
for i in M
p[i] = getDual(consRef)[i]
end
@defVar(cutstockSub, 0 <= Ajstar[M] <= 1000000, Int )
@setObjective(cutstockSub, Min, 1-sum{p[i]*Ajstar[i],i in M})
@addConstraint(cutstockSub, sum{w[i]*Ajstar[i], i in M} <= W)
solve(cutstockSub)
minReducedCost=getObjectiveValue(cutstockSub)
Anew=Float64
for (i in 1:cardinalityM)
push!(Anew, getValue(Ajstar)[i])
end
end

end
println("Objective value: ", getObjectiveValue(cutstockMain))
println("Current Solution is: ", getValue(x))
println("With ", length(xNewArray), " variables added by flow control:")
for i in 1:length(xNewArray)
    println("[",size(A,2)+i,"] = ",getValue(xNewArray[i]))
end
println("Reduced cost of the current solution is ", getObjectiveValue(cutstockSub))

A few things:

  1. You’re using a very old version of JuMP.
  1. Take another read of the PSA.
  • In particular, point 1 describes how to format your code.
  • Point 4 is also important: simplify your code as much as possible. Try to reduce it to the minimum amount of code necessary to reproduce the error.