I want to solve:
Where \rho, \lambda > 0, \boldsymbol{E} = \left[ \boldsymbol{I}_{n}, \; \boldsymbol{0}_{n} \right] and \boldsymbol{A} = \operatorname{Diag} \left( \boldsymbol{y} \right) \left[ \boldsymbol{K}, \; \boldsymbol{1} \right].
The matix \boldsymbol{K} is a Kernel Matrix.
It is SPSD matrix, yet I can’t hold it in memory. I can only calculate elements of it, row / column or apply it on a vector / matrix.
Let \tilde{\boldsymbol{x}} = \boldsymbol{E} \boldsymbol{x} = \left[ {x}_{1}, {x}_{2}, \ldots, {x}_{n - 1} \right]^{\top} then \boldsymbol{A} \boldsymbol{x} = \begin{bmatrix} {y}_{1} \left( \boldsymbol{k}_{1}^{T} \tilde{\boldsymbol{x}} + {x}_{n} \right) \\ {y}_{2} \left( \boldsymbol{k}_{2}^{T} \tilde{\boldsymbol{x}} + {x}_{n} \right) \\ \vdots \end{bmatrix} where \boldsymbol{k}_{i} is the i -th row / column of \boldsymbol{K}.
This implies {\left\| \boldsymbol{A} \boldsymbol{x} - \boldsymbol{y} \right\|}_{2}^{2} = \begin{bmatrix} {y}_{1} \left( \boldsymbol{k}_{1}^{T} \tilde{\boldsymbol{x}} + {x}_{n} - 1 \right) \\ {y}_{2} \left( \boldsymbol{k}_{2}^{T} \tilde{\boldsymbol{x}} + {x}_{n} - 1 \right) \\ \vdots \end{bmatrix}.
I wonder if there a relatively efficient way to solve the problem given the special structure of the matrices without having \boldsymbol{K} explicitly.