Dear all,
When I use FixedEffectModels
with Vcov.cluster
, I get the different p values from the results of Stata.
julia> using DataFrames, RDatasets, FixedEffectModels
julia> df = dataset("plm", "GrunFeld");
julia> ols = reg(df, @formula(Inv ~ Value + Capital), Vcov.cluster(:Firm))
Linear Model
======================================================================
Number of obs: 200 Degrees of freedom: 3
R2: 0.812 R2 Adjusted: 0.811
F-Stat: 51.5906 p-value: 0.000
======================================================================
Inv | Estimate Std.Error t value Pr(>|t|) Lower 95% Upper 95%
----------------------------------------------------------------------
Value | 0.115562 0.0158943 7.27065 0.000 0.0842173 0.146907
Capital | 0.230678 0.0849671 2.71492 0.007 0.0631166 0.39824
(Intercept) | -42.7144 20.4252 -2.09126 0.038 -82.9945 -2.43425
======================================================================
In Stata, the result is
. webuse grunfeld,clear
. reg invest mvalue kstock, cl(company)
Linear regression Number of obs = 200
F(2, 9) = 51.59
Prob > F = 0.0000
R-squared = 0.8124
Root MSE = 94.408
(Std. err. adjusted for 10 clusters in company)
------------------------------------------------------------------------------
| Robust
invest | Coefficient std. err. t P>|t| [95% conf. interval]
-------------+----------------------------------------------------------------
mvalue | 0.1156 0.0159 7.27 0.000 0.0796 0.1515
kstock | 0.2307 0.0850 2.71 0.024 0.0385 0.4229
_cons | -42.7144 20.4252 -2.09 0.066 -88.9194 3.4906
------------------------------------------------------------------------------
Why I get the different p values?