Power function with Integer ( x^4 much slower than x*x*x*x )

Hey there!
I have a question. I need to calculate the following in a hot-loop:
ω(d, dmax) = (1-(d/dmax)^2)^4

I benchmarked different versions of this
and found the following

using BenchmarkTools

d = rand(10000)
dm = rand(10000)+1

ω1(d, dmax) = (1-(d/dmax)^2)^4
@btime ω1.($d, $dm)

ω2(d, dmax) = (x= d/dmax; (1-x^2)^4 )
@btime ω2.($d, $dm)

ω3(d, dmax) = (x= d/dmax; y = 1-x^2; y^4 )
@btime ω3.($d, $dm)

ω4(d, dmax) = (x= d/dmax; y = 1-x^2; y*y*y*y)
@btime ω4.($d, $dm)

679.700 μs (2 allocations: 78.20 KiB)
682.825 μs (2 allocations: 78.20 KiB)
703.061 μs (2 allocations: 78.20 KiB)
10.637 μs (2 allocations: 78.20 KiB)

I looked at the @code_native: ( I started Julia 0.6.2 in O3 mode )

  • The x^2 is unrolled to x*x automatically
  • y^4 actually calls the pow function, which is why the manually unrolled version is so much faster, I assume.

Can anyone tell me why this is the case?
Shouldn’t the compiler do this by itself or is there a reason why in general this would not be good?

Best,
Jonas

2 Likes

The unrolled multiplication is less accurate than the pow function. If you try some random values you can probably find values where they disagree.

2 Likes

And indeed:

ω3_fastmath(d, dmax) = (x= d/dmax; y = 1-x^2; @fastmath y^4 )
@btime ω3_fastmath.($d, $dm)

is as fast asy*y*y*y.

From the documentation Performance Tips:

  • Use @fastmath to allow floating point optimizations that are correct for real numbers, but lead to differences for IEEE numbers. Be careful when doing this, as this may change numerical results. This corresponds to the -ffast-math option of clang.

Indeed, @fastmath version disagrees more times than the unrolled version.

1 Like

On my computer x^4 is almost 20 times(!) as slow as x*x*x*x. That’s quite dramatic. Is that sort of slowdown expected? Is it documented anywhere, and should it be in the performance tips?

I see from @Iagoba_Apellaniz that it is sort of documented, but the amount of slowdown is to me quite astonishing.

Please post how you benchmark and what julia version. I get a factor 3 difference on master.

Of course:

Version 0.6.2, with -03 flag.

julia> r = rand(1000);

julia> @btime ($r).^4;
  24.955 μs (1 allocation: 7.94 KiB)

julia> @btime ($r) .* ($r) .* ($r) .* ($r);
  1.306 μs (1 allocation: 7.94 KiB)

For scalar:

julia> r = rand();

julia> @btime ($r)^4;
  23.066 ns (0 allocations: 0 bytes)

julia> @btime ($r) * ($r) * ($r) * ($r);
  1.739 ns (0 allocations: 0 bytes)

3x slowdown sounds much more reasonable.

On 0.6 for me:

julia> f(x) = x*x*x*x
f (generic function with 1 method)

julia> f2(x) = x^4
f2 (generic function with 1 method)

julia> @btime f2(4)
  4.585 ns (0 allocations: 0 bytes)
256

julia> @btime f(4)
  1.597 ns (0 allocations: 0 bytes)
256

I think the example deals with Float64 numbers. I also have no issues with Int numbers.

UPDATE: Indeed, when using Ints the results are the same for all cases, pow, unroll and fastmath. Not yet the same performance

julia> x = 2; @btime ($x)^4; @btime ($x)*($x)*($x)*($x); @btime @fastmath ($x)^4

  4.044 ns (0 allocations: 0 bytes)
  1.736 ns (0 allocations: 0 bytes)
  3.743 ns (0 allocations: 0 bytes)
16

For integers unrolling is equivalent.

Yes, there is clearly a smaller difference for Ints, as expected.

But there is also a surprising difference here:

julia> foo(x) = x^4
foo (generic function with 1 method)

julia> r = rand();

julia> @btime foo($r)
  24.099 ns (0 allocations: 0 bytes)
0.831660353551182

julia> @btime foo(4.0)
  10.595 ns (0 allocations: 0 bytes)
256.0

Oh, actually, that’s a difference here:

julia> @btime foo(0.4)
  24.348 ns (0 allocations: 0 bytes)
0.025600000000000005

julia> @btime foo(4.0)
  10.604 ns (0 allocations: 0 bytes)
256.0

Amusingly it is not as fast for me on 0.7

versioninfo()
Julia Version 0.7.0-DEV.5021
Commit bfb1c1b91d* (2018-05-06 00:40 UTC)
Platform Info:
  OS: Linux (x86_64-pc-linux-gnu)
  CPU: Intel(R) Core(TM) i5-5###U CPU @ 2.00GHz
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-6.0.0 (ORCJIT, broadwell)

So let’s see the reproducer:

using BenchmarkTools

d = rand(10000);
dm = rand(10000)+1;

omega_3(d, dmax) = (x= d/dmax; y = 1-x^2; y^4 );
omega_3fm(d, dmax) = (x= d/dmax; y = 1-x^2; @fastmath y^4 );
omega_4(d, dmax) = (x= d/dmax; y = 1-x^2; y*y*y*y);
begin 
@btime omega_3.($d,$dm);
@btime omega_3fm.($d,$dm);
@btime omega_4.($d,$dm);
end;
#  799.657 ��s (2 allocations: 78.20 KiB)
#  25.416 ��s (2 allocations: 78.20 KiB)
#  18.386 ��s (2 allocations: 78.20 KiB)

So what’s happening? Let’s look at the @code_native, first the good one:

@code_native omega_4(2.3,4.5)
	.text
; Function omega_4 {
	vdivsd	%xmm1, %xmm0, %xmm0

	vmulsd	%xmm0, %xmm0, %xmm0
	movabsq	$140486950354952, %rax  # imm = 0x7FC5AAC58008

	vmovsd	(%rax), %xmm1           # xmm1 = mem[0],zero
	vsubsd	%xmm0, %xmm1, %xmm0

	vmulsd	%xmm0, %xmm0, %xmm1
	vmulsd	%xmm1, %xmm0, %xmm1

	vmulsd	%xmm1, %xmm0, %xmm0

	retq
	nopw	(%rax,%rax)
;}

And now the bad:

@code_native omega_3fm(2.3,4.5)
	.text
; Function omega_3fm {

	vdivsd	%xmm1, %xmm0, %xmm0

	vmulsd	%xmm0, %xmm0, %xmm0
	movabsq	$140486950351792, %rax  # imm = 0x7FC5AAC573B0

	vmovsd	(%rax), %xmm1           # xmm1 = mem[0],zero
	vsubsd	%xmm0, %xmm1, %xmm0
	vmovsd	%xmm0, -8(%rsp)

	vmulsd	%xmm0, %xmm0, %xmm0
	vmulsd	%xmm0, %xmm0, %xmm0
	retq
	nopl	(%rax)
;}

Who ordered the stupid vmovsd %xmm0, -8(%rsp)? We save an entire multiply but waste it by a spurious store? WTF? I’d say that is an LLVM bug / missed optimization opportunity.

But this does not matter in isolation:

begin 
@btime omega_3fm($1.23, $1.456);
@btime omega_4($1.23, $1.456);
end; 
#  2.650 ns (0 allocations: 0 bytes)
#  2.649 ns (0 allocations: 0 bytes)

So let’s look at the code in context:

foo_3fm(dst,d,dm) = (dst .= omega_3fm.(d,dm); nothing);
foo_4(dst,d,dm) = (dst .= omega_4.(d,dm); nothing);
dst = similar(d);
@btime foo_3fm($dst,$d,$dm)
@btime foo_4($dst,$d,$dm)
@btime broadcast!(/, dst, d,dm);
#24.188 ��s (0 allocations: 0 bytes)
#17.738 ��s (0 allocations: 0 bytes)
#17.547 ��s (0 allocations: 0 bytes)

So we see that the extra multiplication does not matter at all; we are probably constrained by the division only.
We now have a simpler reproducer, and (oh my god is the new @code_native annoyingly verbose, about 2/3 of it is endless unhelpful comments about the provenance of every instruction) can look at the code. We continue to see all the bad writes to the stack (vmovsd %xmm1, 8(%rsp)) and it is clear that they don’t matter unless either the division or a write faults. I have no idea what llvm is thinking; is there a way to inspect the stack unwinding code for a div-by-zero? Maybe that’s why llvm does not simply kill the instruction during generation of native code (the optimization would have to be pretty global, changing both the exception handling and the local code, so more difficult to spot).

I don’t really understand why these moves are so expensive, they should never hit main memory (thanks to write combining and register renaming). Maybe someone fire up IACA.jl? Or someone who has a better understanding of uarch than me?

@code_native foo_3fm(dst,d,dm)
	.text
; Function foo_3fm {
; Location: REPL[35]:1
	pushq	%rbp
	pushq	%r15
	pushq	%r14
	pushq	%r13
	pushq	%r12
	pushq	%rbx
	subq	$56, %rsp
	vxorpd	%xmm0, %xmm0, %xmm0
	vmovapd	%xmm0, 16(%rsp)
	movq	$0, 32(%rsp)
	movq	%rsi, 48(%rsp)
	movq	%fs:0, %rax
	movq	$2, 16(%rsp)
	movq	-10920(%rax), %rcx
	movq	%rcx, 24(%rsp)
	leaq	16(%rsp), %rcx
	movq	%rcx, -10920(%rax)
	leaq	-10920(%rax), %rdi
	movq	(%rsi), %r12
	movq	8(%rsi), %rbx
	movq	16(%rsi), %r15

	movq	24(%r12), %rbp
	movq	%rbp, %rax
	sarq	$63, %rax
	andnq	%rbp, %rax, %r13

	movq	24(%rbx), %r14

	movq	%r14, %rax
	sarq	$63, %rax
	andnq	%r14, %rax, %rax

	cmpq	%rax, %r13
	je	L146

	cmpq	$1, %rax
	jne	L665

L146:
	movq	24(%r15), %rax

	movq	%rax, %rcx
	sarq	$63, %rcx
	andnq	%rax, %rcx, %rax

	cmpq	%rax, %r13

	je	L177
	cmpq	$1, %rax
	jne	L734

L177:
	cmpq	%rbx, %r12
	je	L219

	movq	(%r12), %rax
	cmpq	(%rbx), %rax

	jne	L219

	movabsq	$jl_array_copy, %rax
	movq	%rdi, %r14
	movq	%rbx, %rdi
	callq	*%rax
	movq	%r14, %rdi
	movq	%rax, %rbx
	movq	24(%rbx), %r14

L219:
	cmpq	%r15, %r12
	je	L266

	movq	(%r12), %rax
	cmpq	(%r15), %rax
	jne	L266

	movq	%rbx, 32(%rsp)
	movabsq	$jl_array_copy, %rax
	movq	%rdi, 40(%rsp)

	movq	%r15, %rdi
	callq	*%rax
	movq	40(%rsp), %rdi
	movq	%rax, %r15

L266:
	testq	%r13, %r13
	jle	L632

	testq	%rbp, %rbp
	jle	L632

	movq	24(%r15), %rax
	cmpq	$1, %r14
	jne	L379

	cmpq	$1, %rax
	jne	L476

	xorl	%eax, %eax
	movabsq	$140486950383608, %rcx  # imm = 0x7FC5AAC5EFF8
	vmovsd	(%rcx), %xmm0           # xmm0 = mem[0],zero
L320:
	movq	(%rbx), %rcx
	vmovsd	(%rcx), %xmm1           # xmm1 = mem[0],zero

	movq	(%r15), %rcx

	vdivsd	(%rcx), %xmm1, %xmm1

	vmulsd	%xmm1, %xmm1, %xmm1

	vsubsd	%xmm1, %xmm0, %xmm1
	vmovsd	%xmm1, 8(%rsp)

	vmulsd	%xmm1, %xmm1, %xmm1
	vmulsd	%xmm1, %xmm1, %xmm1

	movq	(%r12), %rcx
	vmovsd	%xmm1, (%rcx,%rax,8)

	addq	$1, %rax

	cmpq	%rax, %r13

	jne	L320
	jmp	L632

L379:
	cmpq	$1, %rax

	jne	L553
	xorl	%eax, %eax
	movabsq	$140486950383608, %rcx  # imm = 0x7FC5AAC5EFF8
	vmovsd	(%rcx), %xmm0           # xmm0 = mem[0],zero
	nopw	%cs:(%rax,%rax)

L416:
	movq	(%rbx), %rcx
	vmovsd	(%rcx,%rax,8), %xmm1    # xmm1 = mem[0],zero

	movq	(%r15), %rcx

	vdivsd	(%rcx), %xmm1, %xmm1

	vsubsd	%xmm1, %xmm0, %xmm1
	vmovsd	%xmm1, 8(%rsp)

	vmulsd	%xmm1, %xmm1, %xmm1
	vmulsd	%xmm1, %xmm1, %xmm1

	movq	(%r12), %rcx
	vmovsd	%xmm1, (%rcx,%rax,8)

	addq	$1, %rax
	cmpq	%rax, %r13

	jne	L416
	jmp	L632
L476:
	xorl	%eax, %eax
	movabsq	$140486950383608, %rcx  # imm = 0x7FC5AAC5EFF8
	vmovsd	(%rcx), %xmm0           # xmm0 = mem[0],zero
	nopl	(%rax)

L496:
	movq	(%rbx), %rcx
	vmovsd	(%rcx), %xmm1           # xmm1 = mem[0],zero

	movq	(%r15), %rcx
	vdivsd	(%rcx,%rax,8), %xmm1, %xmm1

	vmulsd	%xmm1, %xmm1, %xmm1

	vsubsd	%xmm1, %xmm0, %xmm1
	vmovsd	%xmm1, 8(%rsp)

	vmulsd	%xmm1, %xmm1, %xmm1
	vmulsd	%xmm1, %xmm1, %xmm1

	movq	(%r12), %rcx
	vmovsd	%xmm1, (%rcx,%rax,8)

	addq	$1, %rax

	cmpq	%rax, %r13

	jne	L496
	jmp	L632
L553:
	xorl	%eax, %eax
	movabsq	$140486950383608, %rcx  # imm = 0x7FC5AAC5EFF8
	vmovsd	(%rcx), %xmm0           # xmm0 = mem[0],zero
	nopl	(%rax)

L576:
	movq	(%rbx), %rcx
	vmovsd	(%rcx,%rax,8), %xmm1    # xmm1 = mem[0],zero

	vdivsd	(%rcx,%rax,8), %xmm1, %xmm1

	vmulsd	%xmm1, %xmm1, %xmm1

	vsubsd	%xmm1, %xmm0, %xmm1
	vmovsd	%xmm1, 8(%rsp)

	vmulsd	%xmm1, %xmm1, %xmm1
	vmulsd	%xmm1, %xmm1, %xmm1

	movq	(%r12), %rcx
	vmovsd	%xmm1, (%rcx,%rax,8)

	addq	$1, %rax

	jne	L576

L632:
	movq	24(%rsp), %rax
	movq	%rax, (%rdi)
	movabsq	$140486995693576, %rax  # imm = 0x7FC5AD795008
	addq	$56, %rsp
	popq	%rbx
	popq	%r12
	popq	%r13
	popq	%r14
	popq	%r15
	popq	%rbp
	retq

L665:
	movabsq	$jl_gc_pool_alloc, %rax
	movl	$1424, %esi             # imm = 0x590
	movl	$16, %edx
	callq	*%rax
	movabsq	$jl_system_image_data, %rcx
	movq	%rcx, -8(%rax)
	movabsq	$jl_system_image_data, %rcx
	movq	%rcx, (%rax)
	movq	%rax, 32(%rsp)

	movabsq	$jl_throw, %rcx
	movq	%rax, %rdi
	callq	*%rcx

L734:
	movabsq	$jl_gc_pool_alloc, %rax
	movl	$1424, %esi             # imm = 0x590
	movl	$16, %edx
	callq	*%rax
	movabsq	$jl_system_image_data, %rcx
	movq	%rcx, -8(%rax)
	movabsq	$jl_system_image_data, %rcx
	movq	%rcx, (%rax)
	movq	%rax, 32(%rsp)

	movabsq	$jl_throw, %rcx
	movq	%rax, %rdi
	callq	*%rcx
	nopw	%cs:(%rax,%rax)
;}

Postscript:
The better way is of course
omega_5(d, dmax) = ( x= d/dmax; y = 1.0-x*x; (y*y)*(y*y));
which saves us the extra multiply. Doesn’t matter, we appear to be constrained by the divisions, unless you are hyperthreading and someone else can use the sweet execution ports we waste.

5 Likes