MethodError: no method matching +(::Nothing, ::Array{Float64,1}) in parallel computation

I want to run a code using parallel computing, which it works fine for serial computing

@everywhere function relay_basis(alpha,delta,name::String,n)   #n is the number of sources for 1 relay we have 2 sources
    
    chi = fill(sqrt(0.06), n)                  # the parameter chi 
    phi = im*tanh.(chi)
    omega = 1.0 / prod(cosh.(chi))^2
    syms, op = qrelay_op(n, phi, alpha, delta)
    op_a, op_ab, mat, coef = op_mat(op)

    op_q2 = [syms.apH[1], syms.apV[1], syms.bpH[end], syms.bpV[end]]
    op_q1 = [syms.apH[2:end]..., syms.apV[2:end]..., syms.bpH[1:end-1]..., syms.bpV[1:end-1]...]
    mask_q1 = [op in op_q1 for op in op_a];
    
    mask_q2 = [op in op_q2 for op in op_a];
    qq = [x in syms.apH || x in syms.bpV ? 1 : 0 for x in op_a]
           
    pdet0 = pdet_maker(0.04, 1e-5)
    qrs = QRelaySampler(mat, coef, omega, pdet0)
    targetcache=Dict{Vector{Int}, Float64}()
    target(x::Vector)= log(qrs.prob(qq, x, mask_q1) * qrs.prob(x))      #the target function of MCMC
    Iteration=100_000 
    burnin=1000
    samples=Iteration+burnin
    step=25
    save_iter=burnin:step:samples
    dist= qrs.psetproposal           #the proposal distribution
    selected=[]
    Q = []
    
    current_x = zeros(length(qq))
    @time @distributed (+) for i= 2:samples            #from this line the MCMC algorithm starts
        
        proposed_x= rand(dist(current_x))
        
        prop_proposed= pdf(dist(current_x), proposed_x)
        
        prop_current= pdf(dist(proposed_x), current_x)
        
        C=prop_current/ prop_proposed
        
        A= min(1,C * exp(target(proposed_x) - target( current_x)))
        
        
        if rand() < A
            if i in save_iter
                push!(selected, proposed_x)
                push!(Q, qrs.prob(qq, proposed_x, mask_q2))
            end        
    
            current_x = proposed_x
        end
        
    end
    
    return selected, Q
end

when i call the function:

@distributed (+) for i = 0:12
    beta = i*pi/12
    name = string(i)
    selected, Q = relay_basis(pi/4, beta, name,2)
    println("beta:", beta)
    push!(prob,Q)
    df=DataFrame(selected=selected)

end

i get this following error:

On worker 2:
MethodError: no method matching +(::Nothing, ::Array{Float64,1})
Closest candidates are:
  +(::Any, ::Any, !Matched::Any, !Matched::Any...) at operators.jl:529
  +(!Matched::PyCall.PyObject, ::Any) at C:\Users\Administrator\.julia\packages\PyCall\zqDXB\src\pyoperators.jl:13
  +(!Matched::MutableArithmetics.Zero, ::Any) at C:\Users\Administrator\.julia\packages\MutableArithmetics\DcLoq\src\rewrite.jl:52
  ...
#6 at C:\cygwin\home\Administrator\buildbot\worker\package_win64\build\usr\share\julia\stdlib\v1.2\Distributed\src\macros.jl:272
#143 at C:\cygwin\home\Administrator\buildbot\worker\package_win64\build\usr\share\julia\stdlib\v1.2\Distributed\src\remotecall.jl:339 [inlined]
run_work_thunk at C:\cygwin\home\Administrator\buildbot\worker\package_win64\build\usr\share\julia\stdlib\v1.2\Distributed\src\process_messages.jl:79
#remotecall_fetch#148 at C:\cygwin\home\Administrator\buildbot\worker\package_win64\build\usr\share\julia\stdlib\v1.2\Distributed\src\remotecall.jl:364 [inlined]
remotecall_fetch at C:\cygwin\home\Administrator\buildbot\worker\package_win64\build\usr\share\julia\stdlib\v1.2\Distributed\src\remotecall.jl:364 [inlined]
#remotecall_fetch#152 at C:\cygwin\home\Administrator\buildbot\worker\package_win64\build\usr\share\julia\stdlib\v1.2\Distributed\src\remotecall.jl:406 [inlined]
remotecall_fetch at C:\cygwin\home\Administrator\buildbot\worker\package_win64\build\usr\share\julia\stdlib\v1.2\Distributed\src\remotecall.jl:406 [inlined]
#165 at C:\cygwin\home\Administrator\buildbot\worker\package_win64\build\usr\share\julia\stdlib\v1.2\Distributed\src\macros.jl:252

Stacktrace:
 [1] try_yieldto(::typeof(Base.ensure_rescheduled), ::Base.RefValue{Task}) at .\task.jl:517
 [2] wait() at .\task.jl:592
 [3] wait(::Base.GenericCondition{Base.Threads.SpinLock}) at .\condition.jl:104
 [4] wait(::Task) at .\task.jl:191
 [5] fetch at .\task.jl:211 [inlined]
 [6] iterate at .\generator.jl:47 [inlined]
 [7] collect(::Base.Generator{Array{Task,1},typeof(fetch)}) at .\array.jl:606
 [8] preduce(::Function, ::Function, ::UnitRange{Int64}) at C:\cygwin\home\Administrator\buildbot\worker\package_win64\build\usr\share\julia\stdlib\v1.2\Distributed\src\macros.jl:256
 [9] top-level scope at In[5]:1

i tried to make some changes but i get always the same error