I created a neural network using Flux library. My code is based on the paper “neural importance sampling”. I defined custom layers and custom loss function. Each layer returns two outputs. When I run my code, I receive this error:
MethodError: no method matching (::Chain{Tuple{LinearLayer,LinearLayer}})(::Array{Float64,2}, ::Array{Float64,1})
And this is my code:
using Zygote: Buffer
using Flux;
function calculate_forward(xa, xb, q, A::Int64, B::Int64, K::Int64, batch_size::Int64)
bins = Int64.(ceil.(K*xb))
ctransforms = zeros(B, batch_size)
output = zeros(A+B, batch_size)
dets = Buffer(zeros(batch_size))
for s=1:batch_size
det = 1.
for i=1:B
b = bins[i,s]
for j=1:b-1
ctransforms[i,s] += q[i,j,s]
end
ctransforms[i,s] += (K*xb[i,s]-(b-1))*q[i,b,s]
det *= K*q[i,b,s]
end
dets[s] = det
end
output[1:A,:] = xa
output[A+1:end,:] = ctransforms
return output, copy(dets)
end
function calculate_inverse(za, zb, q, A::Int64, B::Int64, K::Int64, batch_size::Int64)
xb = zeros(B, batch_size)
x = zeros(A+B, batch_size)
inv_dets = Buffer(zeros(batch_size))
for s=1:batch_size
inv_det = 1.
for i=1:B
q_sum = 0.
for j=1:K
if q_sum <= zb[i,s] < q_sum + q[i,j,s]
xb[i,s] += (zb[i,s]-q_sum)/(K*q[i,j,s])
xb[i,s] += (j-1)/K
inv_det *= 1/(q[i,j,s]*K)
break
else
q_sum += q[i,j,s]
end
end
end
inv_dets[s] = inv_det
end
x[1:A,:] = za
x[A+1:end,:] = xb
return x, copy(inv_dets)
end
struct LinearLayer
model
A::Int64
B::Int64
K::Int64
batch_size::Int64
end
struct InverseLinearLayer
model
A::Int64
B::Int64
K::Int64
batch_size::Int64
end
function (l::LinearLayer)(input)
A, B, K = l.A, l.B, l.K
batch_size = l.batch_size
if length(input) == 1
x = input[1]
xa, xb = x[1:A,:], x[A+1:end,:]
q = softmax(reshape(l.model(xa), B, K, batch_size), dims=2)
output, det = calculate_forward(xa, xb, q, A, B, K, batch_size)
elseif length(input) == 2
x, prev_det = input
xa, xb = x[1:A,:], x[A+1:end,:]
q = softmax(reshape(l.model(xa), B, K, batch_size), dims=2)
output, det = calculate_forward(xa, xb, q, A, B, K, batch_size)
det .*= prev_det
end
return output, det
end
function (l::InverseLinearLayer)(input)
A, B, K = l.A, l.B, l.K
batch_size = l.batch_size
if length(input) == 1
z = input[1]
za, zb = z[1:A,:], z[A+1:end,:]
q = softmax(reshape(l.model(za), B, K, batch_size), dims=2)
output, det = calculate_inverse(za, zb, q, A, B, K, batch_size)
elseif length(input) == 2
z, prev_det = input
za, zb = z[1:A,:], z[A+1:end,:]
q = softmax(reshape(l.model(za), B, K, batch_size), dims=2)
output, det = calculate_inverse(za, zb, q, A, B, K, batch_size)
det .*= prev_det
end
return output, det
end
Flux.@functor LinearLayer
Flux.@functor InverseLinearLayer
function loss(x,y)
return sum((y./forward([x])[2]).^2)
end
m1 = Chain(Dense(3,7,relu), Dense(7,16))
m2 = Chain(Dense(2,5,relu), Dense(5,24))
forward = Chain(LinearLayer(m1, 3, 2, 8, 32), LinearLayer(m2, 2, 3, 8, 32))
inverse = Chain(InverseLinearLayer(m2, 2, 3, 8, 32), InverseLinearLayer(m1, 3, 2, 8, 32))
f(x::Array{Float64, 2}) = x[1,:].*x[2,:].*exp.(x[3,:]).*sin.(x[4,:]).*sqrt.(x[5,:])
x = rand(5,32)
opt = ADAM()
for i=1:100
Flux.train!(loss, Flux.params(forward), [(x,f(x))], opt)
println(loss(x, f(x)))
end
Why do I receive the error mentioned above?