So this is an example of too many @NLexpression
s being a bad thing. Here’s a few options:
julia> using JLD, JuMP, Ipopt
julia> function ipopt_jump(data, iter=1000, tol=1e-3)
X, Z, choice, obs_s = data
N, L = size(Z)
H, K = size(X)
P = K*L
m = Model(Ipopt.Optimizer)
set_silent(m)
set_attributes(m, "tol" => tol, "max_iter" => iter)
@variable(m, theta[1:P])
@variable(m, delta[1:H])
mu = @expression(m, X * reshape(theta, (K, L)) * Z')
v = @expression(m, delta .+ mu)
ev = @NLexpression(m, [h = 1:H, i = 1:N], exp(v[h, i]))
evsum = @NLexpression(m, [i = 1:N], sum(ev[h, i] for h = 1:H) + 1)
sih = @NLexpression(m, [h = 1:H, i = 1:N], ev[h, i] / evsum[i])
ln_sih = @NLexpression(m, [h = 1:H, i = 1:N], log(sih[h, i]))
@NLobjective(
m,
Max,
sum(choice[h, i] * ln_sih[h, i] for h = 1:H, i = 1:N)
)
optimize!(m)
return objective_value(m), value.(theta), value.(delta)
end
ipopt_jump (generic function with 3 methods)
julia> function ipopt_jump_2(data, iter=1000, tol=1e-3)
X, Z, choice, obs_s = data
N, L = size(Z)
H, K = size(X)
model = Model(Ipopt.Optimizer)
set_silent(model)
set_attributes(model, "tol" => tol, "max_iter" => iter)
@variable(model, theta[1:K, 1:L])
@variable(model, delta[1:H])
@expression(model, v, delta .+ (X * theta * Z'))
@NLexpression(model, evsum[i = 1:N], sum(exp(v[h, i]) for h = 1:H) + 1)
@NLobjective(
model,
Max,
sum(choice[h, i] * log(exp(v[h, i]) / evsum[i]) for h = 1:H, i = 1:N)
)
optimize!(model)
return objective_value(model), value.(theta), value.(delta)
end
ipopt_jump_2 (generic function with 3 methods)
julia> function ipopt_jump_3(data, iter=1000, tol=1e-3)
X, Z, choice, obs_s = data
N, L = size(Z)
H, K = size(X)
model = Model(Ipopt.Optimizer)
set_silent(model)
set_attributes(model, "tol" => tol, "max_iter" => iter)
@variable(model, theta[1:K, 1:L])
@variable(model, delta[1:H])
@expression(model, v, delta .+ (X * theta * Z'))
@NLexpression(model, evsum[i = 1:N], sum(exp(v[h, i]) for h = 1:H) + 1)
choice_h = sum(choice; dims = 1)
@NLobjective(
model,
Max,
sum(choice[h, i] * v[h, i] for h = 1:H, i = 1:N) -
sum(choice_h[i] * log(evsum[i]) for i = 1:N)
)
optimize!(model)
return objective_value(model), value.(theta), value.(delta)
end
ipopt_jump_3 (generic function with 3 methods)
julia> data = load("/Users/Oscar/Downloads/data.jld")["data"]
([-0.849597862907133 -1.7383363775188911; -2.089774486959022 -1.7383363775188911; … ; -2.898726721588342 -1.7383363775188911; -0.9544864981929626 -1.7383363775188911], [-0.29486676502689874 -0.8116805331698356; -0.16866716595935305 -0.8116805331698356; … ; -0.042459422881323435 1.2320112883602086; -0.8992161280397112 -0.8116805331698356], [1.0 1.0 … 0.0 0.0; 0.0 0.0 … 0.0 0.0; … ; 0.0 0.0 … 0.0 0.0; 0.0 0.0 … 1.0 1.0], [0.010817307692307692, 0.01201923076923077, 0.0030048076923076925, 0.013221153846153846, 0.034254807692307696, 0.037259615384615384, 0.0985576923076923, 0.018629807692307692, 0.0030048076923076925, 0.1015625 … 0.0018028846153846155, 0.002403846153846154, 0.0018028846153846155, 0.016826923076923076, 0.0234375, 0.003605769230769231, 0.0018028846153846155, 0.012620192307692308, 0.009014423076923076, 0.013221153846153846])
julia> @time ipopt_jump(data)
7.890690 seconds (9.31 M allocations: 2.742 GiB, 8.11% gc time, 3.98% compilation time)
(-3357.797666382641, [0.2559841072993847, 0.038228499459538955, -0.30623235102878604, 0.2442963856522662], [7.534984835933054, 7.53694802447915, 6.137492345290403, 7.737130209098217, 8.642269463783716, 8.644952456588703, 9.697474361284833, 8.063716077088952, 6.206819436841746, 9.767320964737333 … 5.654692937385994, 5.5702954669101885, 5.729337800983723, 7.921141245751071, 8.283112369637273, 6.438383853896593, 5.745189995044618, 7.5951786012008995, 7.033904140374328, 7.737473644111642])
julia> @time ipopt_jump_2(data)
2.477510 seconds (2.31 M allocations: 644.749 MiB, 8.32% compilation time)
(-3357.7976663826416, [0.2559841072993807 -0.3062323510287861; 0.0382284994595422 0.24429638565226608], [7.534984835909796, 7.536948024455893, 6.137492345267145, 7.737130209074958, 8.642269463760458, 8.644952456565447, 9.697474361261577, 8.063716077065692, 6.206819436818488, 9.767320964714076 … 5.6546929373627375, 5.570295466886936, 5.729337800960466, 7.921141245727812, 8.283112369614013, 6.438383853873335, 5.745189995021359, 7.59517860117764, 7.033904140351074, 7.737473644088384])
julia> @time ipopt_jump_3(data)
1.944815 seconds (1.57 M allocations: 574.916 MiB, 10.67% compilation time)
(-3357.797666382681, [0.25598410729938 -0.30623235102878654; 0.03822849945954291 0.24429638565226683], [7.53498483591045, 7.536948024456545, 6.137492345267797, 7.737130209075611, 8.64226946376111, 8.644952456566099, 9.697474361262229, 8.063716077066344, 6.206819436819142, 9.767320964714727 … 5.654692937363391, 5.570295466887589, 5.729337800961119, 7.921141245728466, 8.283112369614667, 6.438383853873987, 5.745189995022012, 7.595178601178292, 7.033904140351726, 7.737473644089036])
You might also get better performance if you reformulate this as a conic program: Tips and Tricks · JuMP