when i run the VGGforw.jl, i find a error in following
xdlan@server-pc:~/myexperiment/VGG3D/rgbd-convnet-master/VGG3D$ julia VGGforw.jl ERROR: LoadError: LoadError: UndefVarError: @knet not defined
Stacktrace:
[1] top-level scope
[2] include at ./boot.jl:317 [inlined]
[3] include_relative(::Module, ::String) at ./loading.jl:1038
[4] include(::Module, ::String) at ./sysimg.jl:29
[5] exec_options(::Base.JLOptions) at ./client.jl:229
[6] _start() at ./client.jl:421
in expression starting at /home/users/xdlan/myexperiment/VGG3D/rgbd-convnet-master/VGG3D/VGGforw.jl:11
The following is part content of VGGforw.jl
Implementing a test for the RGB-d dataset
148x148 - one layer
#using CUDArt
using CUDAdrv
#device(3)
#CUDNN->CuArrays
using Knet, MAT, ArgParse, CuArrays
@knet function cbf(x;f=:relu, w = Xavier(), b = Constant(0) , p= 1, out = 0, o…)
v = par(; o… , init = w, out=out)
y = conv(v,x; padding = p, mode = CUDNN_CROSS_CORRELATION)
z = bias4(y; binit=b, outDim = out, o…)
return f(z; o…)
end
@knet function bias4(x; binit=Constant(0), outDim = 0, o…)
b = par(; o…, init=binit)
return b+x
end
@knet function cb(x;w = Xavier(), b = Constant(0) , p= 0, s = 1, o…)
v = par(; o… , init = w)
y = conv(v,x; padding = p, stride = s, mode = CUDNN_CROSS_CORRELATION)
return bias4(y; binit =b,o…)
end
@knet function cbfp(x; f=:relu, cwindow=0, pwindow=0, o…)
y = wconv(x; o…, window=cwindow)
z = bias4(y; o…)
return f(z; o…)
end
@knet function vgg_model(x0;weights=0)
x1 = cbf(x0; w = map(Float32,weights["w1_1"]), b = reshape(map(Float32,weights["b1_1"]) ,1,1,size(weights["b1_1"],1),1), out=64)
x2 = cbf(x1; w = map(Float32,weights["w1_2"]), b = reshape(map(Float32,weights["b1_2"]) ,1,1,size(weights["b1_2"],1),1), out=64)
x3 = pool(x2; window = 2)
x4 = cbf(x3; w = map(Float32,weights["w2_1"]), b = reshape(map(Float32,weights["b2_1"]) ,1,1,size(weights["b2_1"],1),1), out=128)
x5 = cbf(x4; w = map(Float32,weights["w2_2"]), b = reshape(map(Float32,weights["b2_2"]) ,1,1,size(weights["b2_2"],1),1), out=128)
x6 = pool(x5; window = 2)
x7 = cbf(x6; w = map(Float32,weights["w3_1"]), b = reshape(map(Float32,weights["b3_1"]) ,1,1,size(weights["b3_1"],1),1), out=256)
x8 = cbf(x7; w = map(Float32,weights["w3_2"]), b = reshape(map(Float32,weights["b3_2"]) ,1,1,size(weights["b3_2"],1),1), out=256)
x9 = cbf(x8; w = map(Float32,weights["w3_3"]), b = reshape(map(Float32,weights["b3_3"]) ,1,1,size(weights["b3_3"],1),1), out=256)
x10 = pool(x9; window = 2)
x11 = cbf(x10; w = map(Float32,weights["w4_1"]), b = reshape(map(Float32,weights["b4_1"]) ,1,1,size(weights["b4_1"],1),1), out=512)
x12 = cbf(x11; w = map(Float32,weights["w4_2"]), b = reshape(map(Float32,weights["b4_2"]) ,1,1,size(weights["b4_2"],1),1), out=512)
x13 = cbf(x12; w = map(Float32,weights["w4_3"]), b = reshape(map(Float32,weights["b4_3"]) ,1,1,size(weights["b4_3"],1),1), out=512)
x14 = pool(x13; window = 2)
x15 = cbf(x14;w = map(Float32,weights["w5_1"]), b = reshape(map(Float32,weights["b5_1"]) ,1,1,size(weights["b5_1"],1),1), out=512)
x16 = cbf(x15; w = map(Float32,weights["w5_2"]), b = reshape(map(Float32,weights["b5_2"]) ,1,1,size(weights["b5_2"],1),1), out=512)
x17 = cbf(x16; w = map(Float32,weights["w5_3"]), b = reshape(map(Float32,weights["b5_3"]) ,1,1,size(weights["b5_3"],1),1), out=512)
x18 = pool(x17; window = 2)
return cbf(x18;w = map(Float32,weights["w6"]), b = reshape(map(Float32,weights["b6"]) ,1,1,size(weights["b6"],1),1), f=:relu, p=0)
#x20 = cbf(x19; w= w77, b=b77, f=:relu, out=4096, p=0)
#return wbf(x20; out = 51, f=:soft)
end
function Knettest(args=ARGS)
#info(“Testing vgg’s code on RGB-d dataset”)
s = ArgParseSettings()
@add_arg_table s begin
(“–seed”; arg_type=Int; default=42)
(“–nbatch”; arg_type=Int; default=100)
(“–lr”; arg_type=Float64; default=0.00001)
(“–epochs”; arg_type=Int; default=5)
(“–gcheck”; arg_type=Int; default=0)
end
isa(args, AbstractString) && (args=split(args))
opts = parse_args(args, s)
println(opts)
for (k,v) in opts; @eval ($(symbol(k))=$v); end
seed > 0 && setseed(seed)
xtrnFile = matopen(“Train3DSplit1Reshaped.mat")
xtrn = read(xtrnFile,"Train3DSplit1Reshaped")
xtrn = map(Float32,xtrn)
println(size(xtrn))
xtstFile = matopen("Test3DSplit1Reshaped.mat")
xtst = read(xtstFile,"Test3DSplit1Reshaped")
xtst = map(Float32,xtst)
println(size(xtst))
#xdevFile = matopen("DevRGBSplit1.mat")
#xdev = read(xdevFile,"DevRGBSplit1")
#xdev = map(Float32,xdev)
#println(size(xdev))
ytrnFile = matopen("Train3DSplit1LabelsMat.mat")
ytrn = read(ytrnFile,"Train3DSplit1LabelsMat")
ytrn = map(Float32,ytrn)
ytstFile = matopen("Test3DSplit1LabelsMat.mat")
ytst = read(ytstFile,"Test3DSplit1LabelsMat")
ytst = map(Float32,ytst)
#ydevFile = matopen("DevRGBSplit1LabelsMat.mat")
#ydev = read(ydevFile,"DevRGBSplit1LabelsMat")
#ydev = map(Float32,ydev)
file = matread("vgg-verydeep-16.mat")
rxtrn = mean(xtrn[:,:,1,:]);
gxtrn = mean(xtrn[:,:,2,:]);
bxtrn = mean(xtrn[:,:,3,:]);
println(rxtrn);
println(gxtrn);
println(bxtrn);
xtrn[:,:,1,:] = xtrn[:,:,1,:] - rxtrn;
xtrn[:,:,2,:] = xtrn[:,:,2,:] - gxtrn;
xtrn[:,:,3,:] = xtrn[:,:,3,:] - bxtrn;
xtst[:,:,1,:] = xtst[:,:,1,:] - rxtrn;
xtst[:,:,2,:] = xtst[:,:,2,:] - gxtrn;
xtst[:,:,3,:] = xtst[:,:,3,:] - bxtrn;
global dtrn = minibatch(xtrn, ytrn, nbatch)
global dtst = minibatch(xtst, ytst, nbatch)
global vgg = compile(:vgg_model; weights=file)
#tic()
dim = 1;fmaps = 4096;
xtrnsize =size(xtrn,4)
xtrnzerosize = xtrnsize + nbatch - xtrnsize%nbatch;#map(Int64, (xtrnsize/nbatch +1)*nbatch);
println(xtrnzerosize)
xtrnZeroPad = zeros(size(xtrn,1),size(xtrn,2),size(xtrn,3),xtrnzerosize)
for x=1:size(xtrn,4)
xtrnZeroPad[:,:,:,x] = xtrn[:,:,:,x]
end
println(size(xtrn))
println(size(xtrnZeroPad))
xtrnZeroPad = map(Float32, xtrnZeroPad)
xtrnFeatures = zeros(dim,dim,fmaps,xtrnzerosize)
for item = 1:nbatch:size(xtrn,4)
ypred = forw(vgg, xtrnZeroPad[:,:,:,item:item+nbatch-1])
xtrnFeatures[:,:,:,item:item+nbatch-1] = to_host(ypred)
end
xtrnFeatures = xtrnFeatures[:,:,:,1:xtrnsize]
filetrn = matopen("TrainRGBSplit1Features1.mat", "w")
write(filetrn, "TrainRGBSplit1Features1", xtrnFeatures)
close(filetrn)
xtrnFeatures = 0;
xtrnZeroPad = 0;
gc();
xtstsize =size(xtst,4)
xtstzerosize = xtstsize + nbatch - xtstsize%nbatch;#map(Int64,(xtstsize/nbatch +1)*nbatch);
println(xtrnzerosize)
xtstZeroPad = zeros(size(xtst,1),size(xtst,2),size(xtst,3),xtstzerosize)
for x=1:size(xtst,4)
xtstZeroPad[:,:,:,x] = xtst[:,:,:,x]
end
println(size(xtst))
println(size(xtstZeroPad))
xtstZeroPad = map(Float32, xtstZeroPad)
xtstFeatures = zeros(dim,dim,fmaps,xtstzerosize)
for item = 1:nbatch:size(xtst,4)
ypred = forw(vgg, xtstZeroPad[:,:,:,item:item+nbatch-1])
xtstFeatures[:,:,:,item:item+nbatch-1] = to_host(ypred)
end
xtstFeatures = xtstFeatures[:,:,:,1:xtstsize]
println(size(xtstFeatures))
println(size(xtrnFeatures))
filetst = matopen("TestRGBSplit1Features1.mat", "w")
write(filetst, "TestRGBSplit1Features1", xtstFeatures)
close(filetst)
#xdevZeroPad = zeros(size(xdev,1),size(xdev,2),size(xdev,3),7040)
#for x=1:size(xdev,4)
# xdevZeroPad[:,:,:,x] = xdev[:,:,:,x]
#end
#xdevFeatures = zeros(dim,dim,fmaps,7040)
#for item = 1:nbatch:size(xdev,4)
# ypred = forw(vgg, xdevZeroPad[:,:,:,item:item+nbatch-1]; trn=false)
# xdevFeatures[:,:,:,item:item+nbatch-1] = to_host(ypred)
#end
#xdevFeatures = xdevFeatures[:,:,:,1:6982]
#filedev = matopen("DevRGBSplit1Features1.mat", "w")
#write(filedev, "DevRGBSplit1Features1", xdevFeatures)
#close(filedev)
#println(toc())
setp(vgg; lr=lr)
#l=zeros(2); m=zeros(2)
#for epoch=1:epochs
# tic();
# train(vgg,dtrn,softloss; losscnt=fill!(l,0), maxnorm=fill!(m,0))
# atrn = 1-test(vgg,dtrn,zeroone)
# atst = 1-test(vgg,dtst,zeroone)
# println((epoch, atrn, atst, l[1]/l[2], m...))
# println(toc())
# gcheck > 0 && gradcheck(vgg, f->getgrad(f,dtrn,softloss), f->getloss(f,dtrn,softloss); gcheck=gcheck)
#end
#return (l[1]/l[2],m...)
end
function train(f, data, loss; losscnt=nothing, maxnorm=nothing)
for (x,ygold) in data
ypred = forw(f, x)
#println(to_host(size(ypred)))
back(f, ygold, loss)
update!(f)
losscnt[1] += loss(ypred, ygold); losscnt[2] += 1
w=wnorm(f); w > maxnorm[1] && (maxnorm[1]=w)
g=gnorm(f); g > maxnorm[2] && (maxnorm[2]=g)
end
end
function test(f, data, loss)
sumloss = numloss = 0
for (x,ygold) in data
ypred = forw(f, x)
sumloss += loss(ypred, ygold)
numloss += 1
end
sumloss / numloss
end
function minibatch(x, y, batchsize)
data = Any
for i=1:batchsize:ccount(x)-batchsize+1
j=i+batchsize-1
push!(data, (cget(x,i:j), cget(y,i:j)))
end
return data
end
function getgrad(f, data, loss)
(x,ygold) = first(data)
ypred = forw(f, x)
back(f, ygold, loss)
loss(ypred, ygold)
end
function getloss(f, data, loss)
(x,ygold) = first(data)
ypred = forw(f, x)
loss(ypred, ygold)
end
!isinteractive() && !isdefined(:load_only) && Knettest(ARGS)