Jacobian of NN: Mutating arrays is not supported

I’m trying to take derivative of the jacobian of neural network. But there emerges mutating arrays problem

nn = Chain(Dense(2,10, tanh), Dense(10,1))
jac₁ = x -> ForwardDiff.jacobian(nn, x) # with respect to x
grads = Zygote.gradient(()->jac₁(rand(2))[1], params(nn))

Is there any way to overcome this in julia?

I’m not sure this is exactly what you want, but I think things may work better with ForwardDiff over Zygote, the opposite order to what you had. Something like this:

julia> grads = x -> Zygote.gradient(() -> only(nn(x)), params(nn))
#35 (generic function with 1 method)

julia> grads(rand(2))[params(nn)[1]]
10×2 Matrix{Float64}:
  0.46342      0.249064
 -0.232392    -0.124899

julia> ForwardDiff.jacobian(x -> grads(x)[params(nn)[1]], rand(2))
20×2 Matrix{Float64}:
  0.715101     -0.00995561
 -0.00685393    0.132286

# next parameter, you could build up IdDict like Grads() if desired
julia> ForwardDiff.jacobian(x -> grads(x)[params(nn)[2]], rand(2))  
10×2 Matrix{Float64}:
 -0.00455624   0.00412416
  0.0606107   -0.00800904

Note that Zygote#master has a jacobian function, which will also work with implicit Params. But ForwardDiff is always going to require explicit input. They way this is done above is, I guess, pretty inefficient, since it re-calculates the whole grads(x) for every parameter.

1 Like

This is so weird. You just changed the order of differentiation and it works. Thanks