Issue for Implementing the Runge Kutta CQ method

I would like to solve convolution equation numerically by the so-called convolution quadrature (CQ) (see the picture) based on Runge-Kutta CQ method. However, I didn’t arrive to get the expected solution as in the attached picture (TextBook; Integral Equation Methods for Evolutionary PDE, page 139) with matlab code. You can see my attempt with julia where all the steps are true,

using TaylorSeries, LinearAlgebra, Plots

function weights( Ks::Function , N , T )
    A = [(88 - 7*√6)/360 (296-169* √6)/1800  (-2+3* √6) / 225 
    (296+169* √6) /1800 (88+7*√6) /360  (-2-3* √6) / 225
     (16-√6 )/36 (16+√6)/36  1/9 ] ;
 b = [(16-√6)/36 , (16+√6)/36  , 1/9];
 c = [(4-√6)/10 , (4 + √6)/10 , 1] ;   
       
Δt = T/N;         
m = length(c) ;
ω=Matrix{Vector{Float64}}(undef,m,m) 
   
 z   = Taylor1(Float64, N+1)
    
Δ(z) = inv( A + ( z / (1-z) ) * ones(m) * b' );

   y = Ks.(Δ(z) / Δt);   
  
    for i in 1:3
    for j in 1:3
            ω[i,j] = y[i,j].coeffs
        end
    end   
  
 return ω, A,b,c;
    
end

function evalRKCQ( g::Function , Ks::Function , N , T)
   
Δt = T/N ; ts = (0:N) * Δt ;    
      
ω ,  A , b , c = weights( Ks , N , T )   
    
m = length(c) 
    
gs = zeros(m , N+1) ;    

for  j in 1:m  
gs[j,:] =  g.(ts .+ Δt * c[j]);  
end   

U=zeros(m,N+1)

for i in 1:m   
for j in 1:m    

    for k in 1:N+1
    
        U[i,k] = sum( ω[i,j][k+1-n] * gs[j,n] for n in 1:k)
        
    end     
    end   
end
    
    return U

end

N = 100; T = 4; ts = (0:N)*T/N;

Ks(s) = 1 /(1 - exp(-s));

g(t) = exp(-100*(t-0.5) ^2);

exact= @. g(ts)+g(ts-1)+g(ts-2)+g(ts-3)

U = evalRKCQ( g , Ks  , N , T)

plot(ts[2:N],exact[2:N])

scatter!(ts[2:N], U[3,1:N-1])


This is my plot’s attempt