How to Find the constraints which are causing infeasibility in the model using compute_iis in Gurobi

How to compute the IIS form for the model shown below

using JuMP, Gurobi
include("Data.jl")

UnitCommitment_dt = UC_dt

function DUC_Clearing(UnitCommitment_dt)
    # Indices
    ngen = length(UC_dt.Gen_Constraints[:,1])
    periods = length(UC_dt.Forecast[1,:])

    # Sets
    J = collect(1:ngen)
    T = collect(1:periods)
    zT = collect(1:periods+1) 
    # Parameters
    # Generator Parameters
    cแต = UC_dt.Gen_Constraints[:,1]
    c  = UC_dt.Gen_Constraints[:,2]
    Pฬฒ  = UC_dt.Gen_Constraints[:,3]
    Pฬ…  = UC_dt.Gen_Constraints[:,4]
    Sแต = UC_dt.Gen_Constraints[:,5]
    Sแดฐ = UC_dt.Gen_Constraints[:,6]
    Rแต = UC_dt.Gen_Constraints[:,7]
    Rแดฐ = UC_dt.Gen_Constraints[:,8]
    Tแต = UC_dt.Gen_Constraints[:,9]
    Tแดฐ = UC_dt.Gen_Constraints[:,10]

    # Initial Init_Conditions
    ๐‘ฃโ‚€ = UC_dt.Init_Conditions[:,1]
    ๐‘โ‚€ = UC_dt.Init_Conditions[:,2]
    U = UC_dt.Init_Conditions[:,3]
    D = UC_dt.Init_Conditions[:,4]
    L = min.(periods*ones(Real, 3), U)
    F = min.(periods*ones(Real, 3), D)
    ๐‘งโ‚œโ‚Šโ‚ = [0; 0 ;0]
  
    # Forecast
    ๐ท = UC_dt.Forecast[1,:]
    ๐‘… = UC_dt.Forecast[2,:]
    
    # Model 
    DUC = Model(Gurobi.Optimizer)
    set_attribute(DUC, "OutputFlag", 1)
    set_attribute(DUC, "FeasibilityTol", 1e-8)
    set_attribute(DUC, "MIPGap", 1e-8)
    set_attribute(DUC, "MIPGapAbs", 0)
    
    # Variables
    
    @variables(DUC, begin
        ๐‘[J,T]          # pโฑผ(t): Active/real power produced by unit j in time period t (MW)
        ๐‘ฬ…[J,T]          # ฬ…pโฑผ(t): Maximum available power in time period t from unit j (MW).
        ๐‘ฃ[J,T], Bin     # vโฑผ(t): On/off status in time period t of the unit j (1 if ON and 0 otherwise)
        ๐‘ฆ[J,T], Bin     # yโฑผ(t): Startup status in time period t of the unit j
        ๐‘ง[J,zT], Bin    # zโฑผ(t): Shutdown status in the time period t of the unit j
    end)
 
    @constraint(DUC, pow_balance[t=T], sum(๐‘[j,t] for j in J) == ๐ท[t])
    @constraint(DUC, reserve[t=T], sum(๐‘ฬ…[j,t] for j in J) โ‰ฅ ๐ท[t]+๐‘…[t])
  
    for t in T, j in J
      if t!=1
        @constraint(DUC, ๐‘ฃ[j,t-1]-๐‘ฃ[j,t]+๐‘ฆ[j,t]-๐‘ง[j,t]==0)
      else
        @constraint(DUC, ๐‘ฃโ‚€[j]-๐‘ฃ[j,t]+๐‘ฆ[j,t]-๐‘ง[j,t]==0)
      end
    end
    for t in T, j in J
      if t!=1
        @constraint(DUC, ๐‘[j,t]-๐‘[j,t-1] โ‰ค Rแต[j]*๐‘ฃ[j,t-1]+Sแต[j]*๐‘ฆ[j,t])
      else
        @constraint(DUC, ๐‘[j,t]-๐‘โ‚€[j] โ‰ค Rแต[j]*๐‘ฃโ‚€[j]+Sแต[j]*๐‘ฆ[j,t])
      end
    end
    for t in T, j in J
      if t!=1
        @constraint(DUC, ๐‘[j,t-1]-๐‘[j,t] โ‰ค Rแดฐ[j]*๐‘ฃ[j,t]+Sแดฐ[j]*๐‘ง[j,t])
      else
        @constraint(DUC, ๐‘โ‚€[j]-๐‘[j,t] โ‰ค Rแดฐ[j]*๐‘ฃ[j,t]+Sแดฐ[j]*๐‘ง[j,t])
      end
    end
    @constraint(DUC, [j=J,t=T], Pฬฒ[j]*๐‘ฃ[j,t] โ‰ค ๐‘[j,t])
    @constraint(DUC, [j=J,t=T], ๐‘[j,t] โ‰ค ๐‘ฬ…[j,t])
    @constraint(DUC, [j=J,t=T], ๐‘ฬ…[j,t] โ‰ค Pฬ…[j]*๐‘ฃ[j,t])
    for t in T, j in J
      if t!=1
        @constraint(DUC, ๐‘ฬ…[j,t] โ‰ค ๐‘[j,t-1] + Rแต[j]*๐‘ฃ[j,t-1]+Sแต[j]*๐‘ฆ[j,t])
      else
        @constraint(DUC, ๐‘ฬ…[j,t] โ‰ค ๐‘โ‚€[j] + Rแต[j]*๐‘ฃโ‚€[j]+Sแต[j]*๐‘ฆ[j,t])
      end
    end
    for t in T, j in J
      #if t!=length(UC_dt.Forecast[1,:])
      @constraint(DUC, ๐‘ฬ…[j,t] โ‰ค Pฬ…[j]*(๐‘ฃ[j,t]-๐‘ง[j,t+1]) + Sแดฐ[j]*๐‘ง[j,t+1])
      #=
      else
        #@constraint(DUC, ๐‘ฬ…[j,t] โ‰ค Pฬ…[j]*(๐‘ฃ[j,t]-๐‘ง[j,1]) + Sแดฐ[j]*๐‘ง[j,1])
        @constraint(DUC, ๐‘ฬ…[j,t] โ‰ค Pฬ…[j]*(๐‘ฃ[j,t]-๐‘ง[j,t+1]) + Sแดฐ[j]*๐‘ง[j,t+1])
      end
      =#
      
    end
    #constraint(DUC, ๐‘ฃ[3,1]==1)
    for j in J
      for t in L[j]+1:periods
        k=t-Tแต[j]+1
        ku = collect(k:t)
        println(k)
        println(ku)
        if kโ‰ฅ1
          @constraint(DUC, sum(๐‘ฆ[j,kuu] for kuu in ku) โ‰ค ๐‘ฃ[j,t])
        end
      end
    end
    
    for j in J
      for t in F[j]+1:periods
        k=t-Tแดฐ[j]+1
        kd = collect(k:t)
        if kโ‰ฅ1
          @constraint(DUC, ๐‘ฃ[j,t] + sum(๐‘ง[j,kdd] for kdd in kd) โ‰ค 1)
        end
      end
    end
    
    for j in J
      @assert(L[j]*F[j]==0)
      for t in 1:L[j]
        @constraint(DUC,๐‘ฃ[j,t]==1)
        #@constraint(DUC,๐‘ฆ[j,t]==0)
        #@constraint(DUC,๐‘ง[j,t]==0)     
      end
      for t in 1:F[j]
        @constraint(DUC,๐‘ฃ[j,t]==0)
        #@constraint(DUC,๐‘ฆ[j,t]==0)
        #@constraint(DUC,๐‘ง[j,t]==0)
      end
    end
    

    @expressions(DUC, begin
      gen_cost, sum(sum(c[j]*๐‘[j,t] for j in J) for t in T)
      startup_cost, sum(sum(cแต[j]*๐‘ฆ[j,t] for j in J) for t in T)
    end)
    @objective(DUC, Min, gen_cost + startup_cost)
    optimize!(DUC)
    
      
    println(DUC)
    println(value.(๐‘))
    #println(dual.(pow_balance)) # can not find dual for MILP
    println(dual_status(DUC))
    
    # Finding dual for the linear version of the problem by fixing the discrete variables
    undo = fix_discrete_variables(DUC)
    println(" Here is the LP version of the model")
    #println(DUC)

    optimize!(DUC)
    dual_status(DUC)
    println(dual.(pow_balance))
    println(dual.(reserve))
    println(value.(๐‘ฬ…))
    println(value.(๐‘))
    #println(value.(๐‘ง))
    
end
  
@time DUC_Clearing(UnitCommitment_dt)

See the tips and suggestions here:

1 Like