Hi!
Just pass a very large number to truncate
argument of show
:
julia> show(df, truncate = 100)
100×3 DataFrame
Row │ time_rel X Y
│ Float64 Array… Array…
─────┼──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
1 │ 0.156148 [0.307362, 0.334855, 0.934461, 0.885757, 0.0761271] [0.492038, 0.630796, 0.00360602, 0.902196, 0.743641]
2 │ 0.670685 [0.307362, 0.334855, 0.934461, 0.885757, 0.0761271] [0.492038, 0.630796, 0.00360602, 0.902196, 0.743641]
3 │ 0.218317 [0.307362, 0.334855, 0.934461, 0.885757, 0.0761271] [0.492038, 0.630796, 0.00360602, 0.902196, 0.743641]
4 │ 0.903568 [0.307362, 0.334855, 0.934461, 0.885757, 0.0761271] [0.492038, 0.630796, 0.00360602, 0.902196, 0.743641]
5 │ 0.384331 [0.307362, 0.334855, 0.934461, 0.885757, 0.0761271] [0.492038, 0.630796, 0.00360602, 0.902196, 0.743641]
6 │ 0.87034 [0.307362, 0.334855, 0.934461, 0.885757, 0.0761271] [0.492038, 0.630796, 0.00360602, 0.902196, 0.743641]
7 │ 0.480099 [0.307362, 0.334855, 0.934461, 0.885757, 0.0761271] [0.492038, 0.630796, 0.00360602, 0.902196, 0.743641]
8 │ 0.434823 [0.307362, 0.334855, 0.934461, 0.885757, 0.0761271] [0.492038, 0.630796, 0.00360602, 0.902196, 0.743641]
9 │ 0.408432 [0.307362, 0.334855, 0.934461, 0.885757, 0.0761271] [0.492038, 0.630796, 0.00360602, 0.902196, 0.743641]
10 │ 0.0756601 [0.307362, 0.334855, 0.934461, 0.885757, 0.0761271] [0.492038, 0.630796, 0.00360602, 0.902196, 0.743641]
11 │ 0.716183 [0.307362, 0.334855, 0.934461, 0.885757, 0.0761271] [0.492038, 0.630796, 0.00360602, 0.902196, 0.743641]
12 │ 0.76725 [0.307362, 0.334855, 0.934461, 0.885757, 0.0761271] [0.492038, 0.630796, 0.00360602, 0.902196, 0.743641]
13 │ 0.183719 [0.307362, 0.334855, 0.934461, 0.885757, 0.0761271] [0.492038, 0.630796, 0.00360602, 0.902196, 0.743641]
14 │ 0.653708 [0.307362, 0.334855, 0.934461, 0.885757, 0.0761271] [0.492038, 0.630796, 0.00360602, 0.902196, 0.743641]
15 │ 0.145333 [0.307362, 0.334855, 0.934461, 0.885757, 0.0761271] [0.492038, 0.630796, 0.00360602, 0.902196, 0.743641]
16 │ 0.340446 [0.307362, 0.334855, 0.934461, 0.885757, 0.0761271] [0.492038, 0.630796, 0.00360602, 0.902196, 0.743641]
17 │ 0.0866462 [0.307362, 0.334855, 0.934461, 0.885757, 0.0761271] [0.492038, 0.630796, 0.00360602, 0.902196, 0.743641]
18 │ 0.284077 [0.307362, 0.334855, 0.934461, 0.885757, 0.0761271] [0.492038, 0.630796, 0.00360602, 0.902196, 0.743641]
19 │ 0.777791 [0.307362, 0.334855, 0.934461, 0.885757, 0.0761271] [0.492038, 0.630796, 0.00360602, 0.902196, 0.743641]
20 │ 0.648991 [0.307362, 0.334855, 0.934461, 0.885757, 0.0761271] [0.492038, 0.630796, 0.00360602, 0.902196, 0.743641]
21 │ 0.72242 [0.307362, 0.334855, 0.934461, 0.885757, 0.0761271] [0.492038, 0.630796, 0.00360602, 0.902196, 0.743641]
22 │ 0.169519 [0.307362, 0.334855, 0.934461, 0.885757, 0.0761271] [0.492038, 0.630796, 0.00360602, 0.902196, 0.743641]
23 │ 0.326246 [0.307362, 0.334855, 0.934461, 0.885757, 0.0761271] [0.492038, 0.630796, 0.00360602, 0.902196, 0.743641]
24 │ 0.210356 [0.307362, 0.334855, 0.934461, 0.885757, 0.0761271] [0.492038, 0.630796, 0.00360602, 0.902196, 0.743641]
25 │ 0.909383 [0.307362, 0.334855, 0.934461, 0.885757, 0.0761271] [0.492038, 0.630796, 0.00360602, 0.902196, 0.743641]
26 │ 0.945082 [0.307362, 0.334855, 0.934461, 0.885757, 0.0761271] [0.492038, 0.630796, 0.00360602, 0.902196, 0.743641]
⋮ │ ⋮ ⋮ ⋮
76 │ 0.256647 [0.307362, 0.334855, 0.934461, 0.885757, 0.0761271] [0.492038, 0.630796, 0.00360602, 0.902196, 0.743641]
77 │ 0.101922 [0.307362, 0.334855, 0.934461, 0.885757, 0.0761271] [0.492038, 0.630796, 0.00360602, 0.902196, 0.743641]
78 │ 0.0582223 [0.307362, 0.334855, 0.934461, 0.885757, 0.0761271] [0.492038, 0.630796, 0.00360602, 0.902196, 0.743641]
79 │ 0.70046 [0.307362, 0.334855, 0.934461, 0.885757, 0.0761271] [0.492038, 0.630796, 0.00360602, 0.902196, 0.743641]
80 │ 0.794336 [0.307362, 0.334855, 0.934461, 0.885757, 0.0761271] [0.492038, 0.630796, 0.00360602, 0.902196, 0.743641]
81 │ 0.750497 [0.307362, 0.334855, 0.934461, 0.885757, 0.0761271] [0.492038, 0.630796, 0.00360602, 0.902196, 0.743641]
82 │ 0.108739 [0.307362, 0.334855, 0.934461, 0.885757, 0.0761271] [0.492038, 0.630796, 0.00360602, 0.902196, 0.743641]
83 │ 0.603001 [0.307362, 0.334855, 0.934461, 0.885757, 0.0761271] [0.492038, 0.630796, 0.00360602, 0.902196, 0.743641]
84 │ 0.0611404 [0.307362, 0.334855, 0.934461, 0.885757, 0.0761271] [0.492038, 0.630796, 0.00360602, 0.902196, 0.743641]
85 │ 0.577953 [0.307362, 0.334855, 0.934461, 0.885757, 0.0761271] [0.492038, 0.630796, 0.00360602, 0.902196, 0.743641]
86 │ 0.655606 [0.307362, 0.334855, 0.934461, 0.885757, 0.0761271] [0.492038, 0.630796, 0.00360602, 0.902196, 0.743641]
87 │ 0.491304 [0.307362, 0.334855, 0.934461, 0.885757, 0.0761271] [0.492038, 0.630796, 0.00360602, 0.902196, 0.743641]
88 │ 0.819947 [0.307362, 0.334855, 0.934461, 0.885757, 0.0761271] [0.492038, 0.630796, 0.00360602, 0.902196, 0.743641]
89 │ 0.194484 [0.307362, 0.334855, 0.934461, 0.885757, 0.0761271] [0.492038, 0.630796, 0.00360602, 0.902196, 0.743641]
90 │ 0.469323 [0.307362, 0.334855, 0.934461, 0.885757, 0.0761271] [0.492038, 0.630796, 0.00360602, 0.902196, 0.743641]
91 │ 0.969326 [0.307362, 0.334855, 0.934461, 0.885757, 0.0761271] [0.492038, 0.630796, 0.00360602, 0.902196, 0.743641]
92 │ 0.96581 [0.307362, 0.334855, 0.934461, 0.885757, 0.0761271] [0.492038, 0.630796, 0.00360602, 0.902196, 0.743641]
93 │ 0.901603 [0.307362, 0.334855, 0.934461, 0.885757, 0.0761271] [0.492038, 0.630796, 0.00360602, 0.902196, 0.743641]
94 │ 0.944663 [0.307362, 0.334855, 0.934461, 0.885757, 0.0761271] [0.492038, 0.630796, 0.00360602, 0.902196, 0.743641]
95 │ 0.878888 [0.307362, 0.334855, 0.934461, 0.885757, 0.0761271] [0.492038, 0.630796, 0.00360602, 0.902196, 0.743641]
96 │ 0.727362 [0.307362, 0.334855, 0.934461, 0.885757, 0.0761271] [0.492038, 0.630796, 0.00360602, 0.902196, 0.743641]
97 │ 0.0358795 [0.307362, 0.334855, 0.934461, 0.885757, 0.0761271] [0.492038, 0.630796, 0.00360602, 0.902196, 0.743641]
98 │ 0.522901 [0.307362, 0.334855, 0.934461, 0.885757, 0.0761271] [0.492038, 0.630796, 0.00360602, 0.902196, 0.743641]
99 │ 0.283858 [0.307362, 0.334855, 0.934461, 0.885757, 0.0761271] [0.492038, 0.630796, 0.00360602, 0.902196, 0.743641]
100 │ 0.904986 [0.307362, 0.334855, 0.934461, 0.885757, 0.0761271] [0.492038, 0.630796, 0.00360602, 0.902196, 0.743641]
49 rows omitted
EDIT: You can also use the parameter maximum_columns_width
of pretty_table
: show(df, maximum_columns_width = 0)