The following is a code that takes the current position & velocity of a box and returns the optimized trajectory of position, velocity, and acceleration. The box is placed in a 2D frictionless map. I want to add a gravity constant to the code: a constant -9.81 value on the y-axis. So I added two constraints. It seems to not work.
@constraint(model, [i=1:num_time_steps, j=[1]], -max_acceleration_Thr <= acceleration[j, i] <= max_acceleration_Thr)
@constraint(model, [i=1:num_time_steps, j=[2]], -(max_acceleration_Thr+accel_g) <= acceleration[j, i] <= (max_acceleration_Thr-accel_g))
The following is the original code.
function run_mpc(initial_position, initial_velocity)
model = Model(Ipopt.Optimizer)
Δt = 0.1
num_time_steps = 10 # Change this -> Affects Optimization
max_acceleration_Thr = 10
accel_g = 9.81
@variables model begin
position[1:2, 1:num_time_steps]
velocity[1:2, 1:num_time_steps]
-max_acceleration <= acceleration[1:2, 1:num_time_steps] <= max_acceleration
end
# Dynamics constraints
# Here is where I added the new constraints
@constraint(model, [i=2:num_time_steps, j=1:2],
velocity[j, i] == velocity[j, i - 1] + (acceleration[j, i - 1]) * Δt)
@constraint(model, [i=2:num_time_steps, j=1:2],
position[j, i] == position[j, i - 1] + velocity[j, i - 1] * Δt)
# Cost function: minimize final position and final velocity
@objective(model, Min,
100 * sum(position[:, end].^2) + sum(velocity[:, end].^2))
# Initial conditions:
@constraint(model, position[:, 1] .== initial_position)
@constraint(model, velocity[:, 1] .== initial_velocity)
optimize!(model)
return value.(position), value.(velocity), value.(acceleration)
end;
begin
# The robot's starting position and velocity
q = [1.0, 0.0]
v = [-1.0, 1.0]
Δt = 0.1
anim = @animate for i in 1:80
# Plot the current position
plot([q[1]], [q[2]], marker=(:hex, 10), xlim=(-1.1, 1.1), ylim=(-1.1, 1.1))
# Run the MPC control optimization
q_plan, v_plan, u_plan = run_mpc(q, v)
# Draw the planned future states from the MPC optimization
plot!(q_plan[1, :], q_plan[2, :], linewidth=5)
# Apply the planned acceleration and simulate one step in time
u = u_plan[:, 1]
global v += u * Δt
global q += v * Δt
end
gif(anim, "~/Downloads/mpc2.gif", fps=15)
end