Gurobi Error 10005: Unable to retrieve attribute 'Pi'

I am trying to retrieve some Gurobi attributes for through MOI.get() function with direct_model() enabled. Everything seems to be working but when I try to get “Pi” (dual value for a constraint), I encounter the error:

Gurobi Error 10005: Unable to retrieve attribute 'Pi'
in top-level scope at initial_test.jl:53
in get at JuMP\e0Uc2\src\JuMP.jl:889
in get at Gurobi\Lci9Q\src\MOI_wrapper.jl:3657
in _get_attribute at Gurobi\Lci9Q\src\MOI_wrapper.jl:3619
in _check_ret at Gurobi\Lci9Q\src\MOI_wrapper.jl:277
versioninfo():
Commit 2d5741174c (2019-12-30 21:36 UTC)
Platform Info:
OS: Windows (x86_64-w64-mingw32)
CPU: Intel(R) Core(TM) i7-9700K CPU @ 3.60GHz
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-6.0.1 (ORCJIT, skylake)
Environment:
JULIA_EDITOR = "C:\Users\Reza\AppData\Local\atom\app-1.54.0\atom.exe" -a
JULIA_NUM_THREADS = 4

Pkg.status():
`C:\Users\Reza\.julia\environments\v1.3\Project.toml`
[c52e3926] Atom v0.12.30
[fa961155] CEnum v0.3.0
[be33ccc6] CUDAnative v3.1.0
[8f4d0f93] Conda v1.5.0
[7806a523] DecisionTree v0.10.10
[31c24e10] Distributions v0.23.8
[587475ba] Flux v0.10.4
[60bf3e95] GLPK v0.14.5
[61eb1bfa] GPUCompiler v0.2.0
[2e9cd046] Gurobi v0.9.7
[7073ff75] IJulia v1.23.1
[b6b21f68] Ipopt v0.6.5
[4076af6c] JuMP v0.21.4
[e5e0dc1b] Juno v0.8.4
[1902f260] Knet v1.3.6
[91a5bcdd] Plots v1.6.12
[438e738f] PyCall v1.92.2
[3646fa90] ScikitLearn v0.6.3
[2913bbd2] StatsBase v0.33.2
[9a3f8284] Random

steps to reproduce:

using Gurobi
using JuMP

# define a simple UC problem

n_u = 8
n_t = 4
U = collect(1:n_u) # num units
T = collect(1:n_t) # num time steps
p_g_min = round.(0.3 <em>rand(n_u), digits=2)
p_g_max = 1 .+ round.(rand(n_u), digits=2)
cost_g = 10 .+ round.(10.0</em> rand(n_u), digits=1)
cost_g0 = round.(3.0 <em>rand(n_u), digits=1)
d0 = rand((sum(p_g_min):.01:.5</em> sum(p_g_max)),n_t)

# basic_uc_model = Model(Gurobi.Optimizer)

basic_uc_model = direct_model(Gurobi.Optimizer())
    @variable(basic_uc_model, p_g[i in U, t in T])
    @variable(basic_uc_model, I_g[i in U, t in T], Bin)
    @constraint(basic_uc_model, lower_band[i in U, t in T], p_g[i,t] >= p_g_min[i]*I_g[i,t])
    @constraint(basic_uc_model, upper_band[i in U, t in T], p_g[i,t] <= p_g_max[i]*I_g[i,t])
    @constraint(basic_uc_model, demand[t in T], sum(p_g[i,t] for i in U) == d0[t])
    @objective(basic_uc_model, Min, sum(p_g[i,t]*cost_g[i] + I_g[i,t]*cost_g0[i] for i in U, t in T))

optimize!(basic_uc_model)
JuMP.objective_value(basic_uc_model)
JuMP.value.(p_g)
JuMP.value.(I_g)

MOI.get(basic_uc_model, Gurobi.ModelAttribute("ObjVal")) # Objective value for current solution
MOI.get(basic_uc_model, Gurobi.VariableAttribute("Obj"), p_g[2,2]) # Linear objective coefficient
MOI.get(basic_uc_model, Gurobi.ConstraintAttribute("Slack"), lower_band[2,2]) #
MOI.get(basic_uc_model, Gurobi.ConstraintAttribute("Pi"), upper_band[2,2]) # Dual value (also known as the shadow price)

I can obtain other attributes as can be seen, this only happens when I try “Pi”. Also, I tried different versions of Gurobi (version 8.1 gurobi software with according julia gurobi package, instead of 9.1) but it did not help. I even tried it on both JuliaPro and Atom+Juno but that did not help neither. Finally, this is not certainly a syntax issue since if I change “Pi” with a random name that is not included, e.g. “Dual”, the error code changes : Gurobi Error 10004: Unknown attribute ‘Dual’. I would appreciate your feedback.

Please provide a link when cross-posting: https://github.com/jump-dev/Gurobi.jl/issues/390.

As I explained, dual values are not available for models with binary variables.

1 Like

Thank you for your responses and I appreciate you bearing with me. I am going to delete this post if possible.

1 Like

No need to delete. It may be helpful for others. The link for cross posting is just so that two people don’t reply with the same answer to a question in two places.

This post was super helpful to me as I ran into the same issue today. Thank you :slight_smile:

1 Like

Glad to hear!

A reminder to future readers that you should query dual_status(model) to see if the solver has a solution before querying dual or shadow_price. Not doing so can throw an error or silently return incorrect solutions.

Relevant section in the JuMP documentation: Solutions · JuMP

This situation is more rare, but I encounter it anyway.

Set parameter OutputFlag to value 1
Set parameter QCPDual to value 1
Gurobi Optimizer version 11.0.2 build v11.0.2rc0 (win64 - Windows 11.0 (22631.2))

CPU model: 11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40GHz, instruction set [SSE2|AVX|AVX2|AVX512]
Thread count: 4 physical cores, 8 logical processors, using up to 8 threads

Optimize a model with 528 rows, 288 columns and 2047 nonzeros
Model fingerprint: 0x2b227fd8
Model has 24 quadratic constraints
Coefficient statistics:
  Matrix range     [1e-03, 6e+00]
  QMatrix range    [1e+00, 1e+00]
  Objective range  [2e-01, 2e+01]
  Bounds range     [0e+00, 0e+00]
  RHS range        [5e-02, 5e+00]
Presolve removed 370 rows and 107 columns
Presolve time: 0.00s
Presolved: 158 rows, 204 columns, 485 nonzeros
Presolved model has 24 second-order cone constraints
Ordering time: 0.00s

Barrier statistics:
 AA' NZ     : 4.190e+02
 Factor NZ  : 1.458e+03
 Factor Ops : 1.652e+04 (less than 1 second per iteration)
 Threads    : 1

                  Objective                Residual
Iter       Primal          Dual         Primal    Dual     Compl     Time
   0  -1.25354714e+02 -3.75702206e+03  1.76e+01 2.10e+01  1.18e+02     0s
   1   3.53382960e+02 -2.86354426e+03  4.14e-01 2.63e+00  1.59e+01     0s
   2   2.45527260e+02 -4.03372205e+02  2.32e-03 3.77e-01  2.52e+00     0s
   3   8.35773331e+01 -7.05132949e+01  2.17e-04 6.90e-02  5.49e-01     0s
   4   3.88871083e+01  1.27671608e+01  1.85e-05 1.03e-02  8.99e-02     0s
   5   3.43244850e+01  2.55418767e+01  5.42e-06 3.41e-03  2.99e-02     0s
   6   3.25598824e+01  2.88231832e+01  1.57e-06 1.48e-03  1.28e-02     0s
   7   3.19555238e+01  3.14579383e+01  4.31e-07 6.49e-05  1.55e-03     0s
   8   3.17528802e+01  3.16894458e+01  8.10e-08 1.04e-06  1.89e-04     0s
   9   3.17077557e+01  3.17046971e+01  4.17e-09 1.28e-08  9.05e-06     0s
  10   3.17054821e+01  3.17051501e+01  3.91e-09 9.95e-10  9.82e-07     0s

Barrier solved model in 10 iterations and 0.01 seconds (0.00 work units)
Optimal objective 3.17054821e+01

Warning: failed to compute QCP dual solution due to inaccurate barrier solution
         Try decreasing BarQCPConvTol for more accuracy

User-callback calls 101, time in user-callback 0.00 sec

@WalterMadelim did you follow the instructions in this warning?

No, I decided to use Mosek instead.
It appears that Mosek’s dual is more reliable when we are dealing with Conic programs.

1 Like