I am teaching a class using the (well-known) book Intro to Statistical Learning in R (ISLR). For the Lab example in Chapter 3, there is an example using polynomial regression in GLM.
According to documentation, the way to do this in Julia should be:
lm_fit=lm(@formula(MedV ~ LStat+LStat^2+LStat^3+LStat^4+LStat^5),Boston)
This give output
StatsModels.TableRegressionModel{LinearModel{GLM.LmResp{Vector{Float64}}, GLM.DensePredChol{Float64, LinearAlgebra.CholeskyPivoted{Float64, Matrix{Float64}}}}, Matrix{Float64}}
MedV ~ 1 + LStat + :(LStat ^ 2) + :(LStat ^ 3) + :(LStat ^ 4) + :(LStat ^ 5)
Coefficients:
─────────────────────────────────────────────────────────────────────────────────────
Coef. Std. Error t Pr(>|t|) Lower 95% Upper 95%
─────────────────────────────────────────────────────────────────────────────────────
(Intercept) 0.0 NaN NaN NaN NaN NaN
LStat 15.8973 0.458112 34.70 <1e-99 14.9972 16.7973
LStat ^ 2 -2.60236 0.111004 -23.44 <1e-81 -2.82045 -2.38427
LStat ^ 3 0.167498 0.0091596 18.29 <1e-56 0.149502 0.185494
LStat ^ 4 -0.00472568 0.000307712 -15.36 <1e-43 -0.00533024 -0.00412112
LStat ^ 5 4.85095e-5 3.60338e-6 13.46 <1e-34 4.14299e-5 5.55891e-5
─────────────────────────────────────────────────────────────────────────────────────
Which seems buggy and anyway does not correspond to corresponding result run in R.
Am I understanding the usage correctly?
Thanks for any help.