I have published my code in the following link.

I am pasting my code here as well

```
##
using Symbolics
using Plots
using Statistics
##
a = 0.529*10^-10 # Radius of hydrogen atom in meters
function Legrande(l::Int, cosθ::Num)
# Compute the Legendre polynomial. Here cosθ is a symbolic variable
D_cst_l = Differential(cosθ)^l # This is lᵗʰ derivative operator wrt cst
legrande = (1 / (2^l * factorial(l))) * (D_cst_l(cosθ^2 - 1)^l)
legrande = expand_derivatives(legrande)
return legrande
end
#%%
function AssoLegrande(l::Int, m::Int, cst::Float64)
# Define the symbolic variable
@variables cosθ
# Compute the associated Legendre polynomial
D_cst_m = Differential(cosθ)^m
asslegrande = (-1)^m * (1 - cosθ^2)^(m/2) * D_cst_m(Legrande(l, cosθ))
asslegrande = expand_derivatives(asslegrande)
# Substitute the numeric value of cst into the symbolic expression
asslegrande = substitute(asslegrande, cosθ => cst)
return asslegrande
end
#%%
function Laguerre(q::Int,x::Num)
# Laguerre function
# Here x is a symbolic variable
if q==0
leg=1;
else
Dx_q = Differential(x)^q
leg = exp(x)*Dx_q(exp(-x)*x^q)/factorial(q)
leg = expand_derivatives(leg)
end
return leg
# this returns Laguerre polynomial
end
#%%
function AssoLaguerre(p ::Int, q ::Int, k::Float64)
# Associated Laguerre function
@variables x
if p == 0
Dx = Differential(x)
asso_lag = (-1)^p * (p+q,x)
else
Dx_p = Differential(x)^p
asso_lag = (-1)^p * Dx_p(Laguerre(p+q, x))
end
# this returns Associated Laguerre polynomial
asso_lag = expand_derivatives(asso_lag)
asso_lag = substitute(asso_lag, x => k)
return asso_lag
end
#%%
function Radial(n::Int, l::Int, r::Float64)
# Define the symbolic variables
@variables ρ
# Compute the radial part of the wavefunction
radial = sqrt((2/(n*a))^3 * factorial(n-l-1) / (factorial(n+l) * 2 * n)) * exp(-r/(n*a)) * (2*r/(n*a))^l
radial = radial * AssoLaguerre(2*l+1, n-l-1, r)
radial = expand_derivatives(radial)
# Substitute temp = 2*r/(n*a)
ρ_val = 2*r/(n*a)
# Substitute the numeric value of r into the symbolic expression
radial = substitute(radial,Dict([ρ => ρ_val]))
return radial
end
#%%
function Angular(l::Int, m::Int, cst::Float64, phi::Float64)
i = Complex{Float64}(0, 1) # Define the imaginary unit
angular = sqrt((2*l+1) * factorial(l-m) / (4*pi * factorial(l+m))) * AssoLegrande(l, m, cst) * exp(i * m * phi)
return angular
end
##
@variables ρ, cosθ, φ # ρ is radial distance, φ is azimuthal angle, θ is the
# n, l, m are the principle, azimuthal, and magnetic quantum numbers
##% Initialisations
rₘᵢₙ = 0.5* a
rₘₐₓ = 50* a
r_steps = 10
θ_steps = 10
φ_steps = 10
Total_steps = r_steps * θ_steps * φ_steps
n = 1
l = 0
m = 0
x = zeros(Total_steps)
y = x
z = x
#ψ(n,l,m,θ,r,ϕ) = Radial(n, l, r)*Angular(l, m, cos(θ), ϕ)
# ψ = Radial(...) * Angular(...)
# The Radial(...) calls the Associated Laguerre function which in turn calls the Laguerre function
# Simillarly the Radial(...) calls the Associated Legendre function which in turn calls the Legendre function
ψ² = zeros(Total_steps) # Initializing place holder for |ψ|²
global counter = 1
##
for r = range(rₘᵢₙ, rₘₐₓ, 100)
for θ = range(0, π, 30)
for ϕ=range(0, 2*π, 30)
print(ϕ)
# substitute and save the values of psi for all
# different psi, theta and r
ψ = Radial(n, l, r)*Angular(l, m, cos(θ), ϕ)
ψ²[counter] = abs(ψ)^2
# this is the probability of finding an electron of the orbital (n,l,m) at the position (r,θ,ϕ)
# transforming spherical coordinates to cartesian coordinates and storing them
x[counter] = r*sin(θ)*cos(ϕ)
y[counter] = r*sin(θ)*sin(ϕ)
z[counter] = r*cos(θ)
counter = counter +1
end
end
end
##
ψ²_sum =sum(ψ²) # This should be close to 1
ψ² = ψ²/ψ²_sum # Now it is normalized
# Initialize the points that need to be plotted
X = []
Y = []
Z = []
c=0
for b=1:PH
if ψ² < 1.1 && ψ² > 0.9
c = c + 1
push!(X,x[c])
push!(Y,y[c])
push!(Z,z[c])
# I am storing all the points at which 0.9<Psi/Mpsi<1.1
# Sometimes I changed the range to get better plot
b=b+1
# Now plotting the stored points
Plots.scatter3d(X, Y, Z, markersize = 2, color = :red)
title!("n= l=2 m=2")
xlabel!("x")
ylabel!("y")
zlabel!("z")
```

I am new to Julia and I have just migrated this MATLAB code to Julia.

I keep getting the following error when running the above code

```
┌ Warning: Assignment to `counter` in soft scope is ambiguous because a global variable by the same name exists: `counter` will be treated as a new local. Disambiguate by using `local counter` to suppress this warning or `global counter` to assign to the existing global variable.
└ @ c:\Users\vikra\OneDrive\Desktop\Julia Programmes\Hydrogen Atom\Hydrogen_atom.jl:114
0.0ERROR: StackOverflowError:
Stacktrace:
[1] _repeat_apply(f::Function, n::Int64) (repeats 43392 times)
@ Symbolics C:\Users\vikra\.julia\packages\Symbolics\OrNx6\src\diff.jl:366
[2] _repeat_apply (repeats 2 times)
@ C:\Users\vikra\.julia\packages\Symbolics\OrNx6\src\diff.jl:366 [inlined]
[3] ^
@ C:\Users\vikra\.julia\packages\Symbolics\OrNx6\src\diff.jl:46 [inlined]
[4] AssoLegrande(l::Int64, m::Int64, cst::Float64)
@ Main c:\Users\vikra\OneDrive\Desktop\Julia Programmes\Hydrogen Atom\Hydrogen_atom.jl:19
[5] Angular(l::Int64, m::Int64, cst::Float64, phi::Float64)
@ Main c:\Users\vikra\OneDrive\Desktop\Julia Programmes\Hydrogen Atom\Hydrogen_atom.jl:75
[6] top-level scope
@ c:\Users\vikra\OneDrive\Desktop\Julia Programmes\Hydrogen Atom\Hydrogen_atom.jl:107
```

Please Help me get the code running