trying to get percentile using a specific value in this case stock close.
The data set is below I loaded it all into a dataframe called df_symbol. The columns are time and close.
time close
20210412 701.98
20210413 762.32
20210414 732.23
20210415 738.85
20210416 739.78
20210419 714.63
20210420 718.99
20210421 744.12
20210422 719.69
20210423 729.4
20210426 738.2
20210427 704.74
20210428 694.4
20210429 677
20210430 709.44
20210503 684.9
20210504 673.6
20210505 670.94
20210506 663.54
20210507 672.37
20210510 629.04
20210511 617.2
20210512 589.89
20210513 571.69
20210514 589.74
20210517 576.83
20210518 577.87
20210519 563.46
20210520 586.78
20210521 580.88
20210524 606.44
20210525 604.69
20210526 619.13
20210527 630.85
20210528 625.22
20210601 623.9
20210602 605.12
20210603 572.84
20210604 599.05
20210607 605.13
20210608 603.59
20210609 598.78
20210610 610.12
20210611 609.89
20210614 617.69
20210615 599.36
20210616 604.87
20210617 616.6
20210618 623.31
20210621 620.83
20210622 623.71
20210623 656.57
20210624 679.82
20210625 671.87
20210628 688.72
20210629 680.76
20210630 679.7
20210701 677.92
20210702 678.9
20210706 659.58
20210707 644.65
20210708 652.81
20210709 656.95
20210712 685.7
20210713 668.54
20210714 653.38
20210715 650.6
20210716 644.22
20210719 646.22
20210720 660.5
20210721 655.29
20210722 649.26
20210723 643.38
20210726 657.62
20210727 644.78
20210728 646.98
20210729 677.35
20210730 687.2
20210802 709.67
20210803 709.74
20210804 710.92
20210805 714.63
20210806 699.1
20210809 713.76
20210810 709.99
20210811 707.82
20210812 722.25
20210813 717.17
20210816 686.17
20210817 665.71
20210818 688.99
20210819 673.47
20210820 680.26
20210823 706.3
20210824 708.49
20210825 711.2
20210826 701.16
20210827 711.92
20210830 730.91
20210831 735.72
20210901 734.09
20210902 732.39
20210903 733.57
20210907 752.92
20210908 753.87
20210909 754.86
20210910 736.27
20210913 743
20210914 744.49
20210915 755.83
20210916 756.99
20210917 759.49
20210920 730.17
20210921 739.38
20210922 751.94
20210923 753.64
20210924 774.39
20210927 791.36
20210928 777.56
20210929 781.31
20210930 775.48
20211001 775.22
20211004 781.53
20211005 780.59
20211006 782.75
20211007 793.61
20211008 785.49
20211011 791.94
20211012 805.72
20211013 811.08
20211014 818.32
20211015 843.03
20211018 870.11
20211019 864.27
20211020 865.8
20211021 894
20211022 909.68
20211025 1024.86
20211026 1018.43
20211027 1037.86
20211028 1077.04
20211029 1114
20211101 1208.59
20211102 1172
20211103 1213.86
20211104 1229.91
20211105 1222.09
20211108 1162.94
20211109 1023.5
20211110 1067.95
20211111 1063.51
20211112 1033.42
20211115 1013.39
20211116 1054.73
20211117 1089.01
20211118 1096.38
20211119 1137.06
20211122 1156.87
20211123 1109.03
20211124 1116
20211126 1081.92
20211129 1136.99
20211130 1144.76
20211201 1095
20211202 1084.6
20211203 1014.97
20211206 1009.01
20211207 1051.75
20211208 1068.96
20211209 1003.8
20211210 1017.03
20211213 966.41
20211214 958.51
20211215 975.99
20211216 926.92
20211217 932.57
20211220 899.94
20211221 938.53
20211222 1008.87
20211223 1067
20211227 1093.94
20211228 1088.47
20211229 1086.19
20211230 1070.34
20211231 1056.78
20220103 1199.78
20220104 1149.59
20220105 1088.12
20220106 1064.7
20220107 1026.96
20220110 1058.12
20220111 1064.4
20220112 1106.22
20220113 1031.56
20220114 1049.61
20220118 1030.51
20220119 995.65
20220120 996.27
20220121 943.9
20220124 930
20220125 918.4
20220126 937.41
20220127 829.1
20220128 846.35
20220131 936.72
20220201 931.25
20220202 905.66
20220203 891.14
20220204 923.32
20220207 907.34
20220208 922
20220209 932
20220210 904.55
20220211 860
20220214 875.76
20220215 922.43
20220216 923.39
20220217 876.35
20220218 856.98
20220222 821.53
20220223 764.04
20220224 800.77
20220225 809.87
20220228 870.43
20220301 864.37
20220302 879.89
20220303 839.29
20220304 838.29
20220307 804.58
20220308 824.4
20220309 858.97
20220310 838.3
20220311 795.35
20220314 766.37
20220315 801.89
20220316 840.23
20220317 871.6
20220318 905.39
20220321 921.16
20220322 993.98
20220323 999.11
20220324 1013.92
20220325 1010.64
20220328 1091.84
20220329 1099.57
20220330 1093.99
20220331 1077.6
20220401 1084.59
20220404 1145.45
20220405 1091.26
20220406 1045.76
20220407 1057.26
20220408 1025.49
20220411 988.67
Iβm still learning Julia so can someone just check my code please.
ANY comments welcomed.
julia> last(df_symbol)
DataFrameRow
Row β time close
β Int64 Float64
ββββββΌβββββββββββββββββββ
254 β 20220411 988.67
julia> last(df_symbol).close
988.67
julia> days_below = nrow(filter(row -> row.close < last(df_symbol).close,df_symbol) )
185
julia> percent_below = (days_below/nrow(df_symbol))*100
72.83464566929135
julia> percent_above = 100 - (days_below/nrow(df_symbol))*100
27.165354330708652