I am trying to understand how to use the @turbo macro from LoopVectorization.jl efficiently.
I am starting with a generalised dot product, as implemented in LinearAlgebra. I basically took the code from LinearAlgebra and tried to apply the @turbo macro following the examples in its official documentation:
function turbo_dot(x::AbstractVector{Float64}, A::AbstractMatrix{Float64}, y::AbstractVector{Float64})
s = 0.0;
@turbo for j in eachindex(y)
yj = y[j];
if !iszero(yj)
temp = 0.0;
for i in eachindex(x)
temp += x[i]*A[i,j];
end
s += temp*yj;
end
end
return s;
end
However, I get a strange error message: nested task error: LoadError: LoadError: LoadError: Don't know how to handle expression.
Could someone please explain me what this means and how I should approach it? I noticed that if I use the @turbo macro with the inner-most loop it works fine. However, I do not understand why should I do it considering - for instance - that the example on matrix multiplications (Matrix Multiplication · LoopVectorization.jl) uses it on the outer-most loop.
I forgot to mention that I noticed that by dropping the if-else statement the code works fine. Does it imply that if-else statements cannot be used with the @turbo macro?
Thanks! My only concern with multi-threading is that I am already parallelising using a range of workers and I am not sure whether there is any scope left.
julia> using LoopVectorization, LinearAlgebra
julia> function fastmath_dot(x::AbstractVector{Float64}, A::AbstractMatrix{Float64}, y::AbstractVector{Float64})
s = 0.0;
@fastmath for j in eachindex(y)
yj = y[j];
if !iszero(yj)
temp = 0.0;
for i in eachindex(x)
temp += x[i]*A[i,j];
end
s += temp*yj;
end
end
return s;
end
fastmath_dot (generic function with 1 method)
julia> function turbo_dot(x::AbstractVector{Float64}, A::AbstractMatrix{Float64}, y::AbstractVector{Float64})
s = 0.0;
@turbo for j in eachindex(y), i in eachindex(x)
s += x[i]*A[i,j]*y[j];
end
return s;
end
turbo_dot (generic function with 1 method)
julia> x = rand(100);
julia> y = rand(100);
julia> A = rand(100,100);
julia> y[rand(axes(y,1), length(y) ÷ 2)] .= 0;
julia> @btime turbo_dot($x, $A, $y)
639.714 ns (0 allocations: 0 bytes)
745.9084558196317
julia> @btime fastmath_dot($x, $A, $y)
4.253 μs (0 allocations: 0 bytes)
745.9084558196316
julia> @btime dot($x, $A, $y)
434.628 ns (0 allocations: 0 bytes)
745.9084558196316
julia> @btime turbo_dot($y, $A, $x)
635.095 ns (0 allocations: 0 bytes)
743.8372158481377
julia> @btime fastmath_dot($y, $A, $x)
6.860 μs (0 allocations: 0 bytes)
743.8372158481382
julia> @btime dot($y, $A, $x)
781.343 ns (0 allocations: 0 bytes)
743.837215848138
julia> versioninfo()
Julia Version 1.8.0-DEV.383
Commit eb83c4d25b* (2021-08-20 20:03 UTC)
Platform Info:
OS: Linux (x86_64-redhat-linux)
CPU: 11th Gen Intel(R) Core(TM) i7-1165G7 @ 2.80GHz
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-12.0.1 (ORCJIT, tigerlake)
So which is faster depends on just how many zeros.
You can also try this, but it was slower for me at this size:
julia> function turbo_dot2(x::AbstractVector{Float64}, A::AbstractMatrix{Float64}, y::AbstractVector{Float64})
s = 0.0;
@turbo for j in eachindex(y)
temp = 0.0;
for i in eachindex(x)
temp += x[i]*A[i,j];
end
s += temp*y[j];
end
return s;
end
turbo_dot2 (generic function with 1 method)
julia> @btime turbo_dot2($y, $A, $x)
663.428 ns (3 allocations: 64 bytes)
743.8372158481376
julia> @btime turbo_dot2($x, $A, $y)
665.138 ns (3 allocations: 64 bytes)
745.9084558196316