I noted a difference in `rand`

when applying `QR`

. When I run:

```
using LinearAlgebra
a = rand(5,5) + 1im*zeros(5,5)
display(qr(a))
```

I get `Q`

and `R`

matrices with zeros for imaginary numbers - I’m going to show only the `Q`

matrix, but the same occurs for `R`

matrix:

```
LinearAlgebra.QRCompactWY{Complex{Float64},Array{Complex{Float64},2}}
Q factor:
5×5 LinearAlgebra.QRCompactWYQ{Complex{Float64},Array{Complex{Float64},2}}:
-0.306991+0.0im -0.0269743+0.0im 0.44535+0.0im 0.507313+0.0im -0.670318+0.0im
-0.513317+0.0im -0.331366+0.0im 0.443593+0.0im -0.653912+0.0im 0.0482431+0.0im
-0.253514+0.0im -0.195796+0.0im -0.735177+0.0im -0.240831+0.0im -0.546726+0.0im
-0.452319+0.0im 0.879683+0.0im -0.0607519+0.0im -0.129452+0.0im 0.0334178+0.0im
-0.611065+0.0im -0.278013+0.0im -0.246398+0.0im 0.490179+0.0im 0.498318+0.0im
```

When I create a complex random matrix, I get complex numbers as expected

```
a = rand(Complex{Float64},5,5)
display(qr(a))
```

I obtain:

```
LinearAlgebra.QRCompactWY{Complex{Float64},Array{Complex{Float64},2}}
Q factor:
5×5 LinearAlgebra.QRCompactWYQ{Complex{Float64},Array{Complex{Float64},2}}:
-0.417663-0.390527im 0.0434441+0.219283im 0.50579-0.292637im 0.449124+0.237358im 0.0737883-0.134603im
-0.241653-0.195952im -0.273828+0.504695im -0.138368-0.260033im -0.614793-0.162831im 0.271654-0.0919992im
-0.283323-0.158954im 0.0356911-0.0875481im 0.0755045+0.54749im -0.0344772-0.414637im -0.142673-0.621779im
-0.350583-0.354448im 0.476321-0.497379im -0.000282387+0.00840499im -0.331509-0.0444532im 0.189458+0.359654im
-0.387173-0.26883im -0.364405+0.0658085im -0.469138+0.214872im 0.181638+0.13959im -0.448918+0.347044im
```

Does anybody knows what’s is going on ?