Hello, I have a simple 2D system and I tried continuation from simple branch points

```
using Plots, BifurcationKit, Setfield, ForwardDiff, Parameters
const BK = BifurcationKit
function f(x,p)
@unpack a,g,γ,r,d = p
M,C = x
T = 1 - M - C
dM = @. a * M * C - (g * M) / (M + T) + γ * M * T
dC = @. r * T * C - d * C - a * M * C
return [dM, dC]
end
jet = BK.getJet(f; matrixfree = false)
# Starting variables
start = [0.2, 0.6]
# Default values for parameters
parameters = (a = 0.1, g = 0.01, γ = 0.8, r = 1., d = 0.44)
# Options for Newton-Krylov solver and continuation
optnewton = NewtonPar(tol = 1e-12, maxIter = 100)
options = ContinuationPar(pMin = 0.01, pMax = 1., dsmin = 0.0001, dsmax = 0.05, ds = 0.01,
maxSteps = 100, nev = 30, nInversion = 8, detectBifurcation = 3, newtonOptions = optnewton,
dsminBisection = 1e-7, maxBisectionSteps = 100)
# Solving for equilibrium from starting point using Newton-Krylon solver
solution, = newton(f, start, parameters, optnewton)
solution[2]
br, = continuation(f, solution, parameters, (@lens _.g), options,
plot = true,
recordFromSolution = (x,p) -> (C = x[2], M = x[1])
)
br1, = continuation(jet..., br, 1, setproperties(options;ds = 0.0001, maxSteps = 30), recordFromSolution = (x,p) -> (C = x[2], M = x[1]), bothside = true, plot = true)
br2, = continuation(jet..., br1, 2, setproperties(options; maxSteps = 20, ds = 0.0001), recordFromSolution = (x,p) -> (C = x[2], M = x[1]), bothside = true,plot = true)
plot(br, br1; branchlabel = ["br", "br1"], legend = :topright, ylims = (0,0.8), vars = (:param, :C))
plot(br, br1; branchlabel = ["br", "br1"], legend = :topright, ylims = (0,1), vars = (:param, :M))
```

The first continuation gives expected results - it picks the second branch and continues on it.

The second aBS should result in a horizontal line C = 0, but it stays on the same branch as it was.

Is there something I’m doing wrong or is it a bug in BifurcationKit.jl?