I just enabled the new discourse math plugin! This is a beta test for now, so please report all problems you encounter here.

Latex math formulas surrounded by `$`

or `$$`

should render correctly. E=mc^2

Best,
Valentin

PS: I am on vacation till the 25th so please be patient if I don’t answer immediately.

19 Likes

dpo
July 20, 2017, 1:11am
2
inline: E = mc^2
display:

E = mc^2

1 Like

\frac{\partial u} {\partial t }+ u \cdot \nabla u = - \nabla p + \nu \nabla^2 u

\nabla \cdot u = 0

sweet!

2 Likes

tshort
July 20, 2017, 2:16am
4
In the preview, surrounding by pairs of dollar signs doesn’t work, but single dollar signs are fine.

E = mc^2

It seems that `$$`

can only used as blocks and not inline. You can find
more information about the plugin at:

:discourse2: Summary Discourse Math uses MathJax (default) or KaTeX to render maths in your Discourse forum. 🛠 Repository Link https://github.com/discourse/discourse-math 📖 Install Guide How to install plugins in Discourse Enabling Math...

Reading time: 24 mins 🕑
Likes: 63 ❤

Evey
July 20, 2017, 7:43am
6
f_n(x) = n \cdot \begin{cases} f(x - 1) & \text{if } x > 0, \\ 1 & \text{otherwise}. \end{cases}

\square f^A = -\rho(\varphi, \vec\varrho, \boldsymbol\vartheta) \hspace{2em} \forall A \notin \{\ddot x | \ddot x > 0, x \in \mathbb J\}

The preview doesn’t update automatically for me if the first line is a `$$`

block.

Juan
July 24, 2017, 2:13pm
7
i\hbar\frac{\partial}{\partial t} \Psi(\mathbf{r},\,t) =
-\frac{\hbar^2}{2m}\nabla^2 \Psi(\mathbf{r},\,t) + V(\mathbf{r})\Psi(\mathbf{r},\,t)

R_{\mu \nu} - {1 \over 2}g_{\mu \nu}\,R + g_{\mu \nu} \Lambda =
{8 \pi G \over c^4} T_{\mu \nu}

2 Likes

bc(v) = \frac{1}{\mathcal{N}} \sum_{s \neq t \neq v}
\frac{\sigma_{st}(v)}{\sigma_{st}}

bc(v) = \frac{1}{\mathcal{N}} \sum_{s \neq t \neq v}
\frac{\sigma_{st}(v)}{\sigma_{st}}

Just a note: no need to escape backslashes.

Yang-Mills
\mathcal{L} \supset i\bar{\psi}_{a}{\cancel{D}^{a}}_{b}\psi^{b} - m\bar{\psi}_{a}\psi^{a} - \frac{1}{4}G_{\mu\nu}^{a}G^{\mu\nu}_{a}

Z = \int\mathcal{D}\psi\mathcal{D}\bar{\psi}\mathcal{D}A ~ e^{-\int d^{n}x ~ \mathcal{L}[\psi,\bar{\psi},A]}

Einstein-Hilbert
S \supset \int d^{4}x\sqrt{-g}~M_{P}^2(R-2\Lambda)

Stokes Theorem
\int_{V} d\omega = \int_{\partial V}\omega

Bosonic String
S = \int d^{2}\xi \sqrt{-g} g^{ab}\partial_{a}X^{\mu}\partial_{b}X^{\nu}G_{\mu\nu}(X)

Celebration
Yay!

2 Likes

rveltz
July 24, 2017, 5:24pm
10

ExpandingMan:

Sean Carroll

You have never used an integration by parts? You could not be more wrong

(It was a joke. It is, in fact, arguably one of the most important theorems in mathematics. Certainly in calculus. Also I might not be remembering the exact quote, I remember Carroll making some comment to this effect in “Spacetime and Geometry” but, again, it was a joke about differential forms.)

I’ve deleted this since I don’t want to be accused of misrepresenting my favorite textbook .

1 Like