An initial benchmark for R forecast vs R smooth vs Julia Durbyn:
> packageVersion("forecast")
[1] ‘8.24.0’
> library(forecast)
> system.time({fit <- ets(AirPassengers, model = "ZZZ")})
user system elapsed
0.31 0.00 0.31
> fc = forecast(fit, h = 12)
> autoplot(fc)
> packageVersion("smooth")
[1] ‘4.3.0’
> library(smooth)
> system.time({fit <- es(AirPassengers, model = "ZZZ")})
user system elapsed
0.198 0.000 0.198
> fc = forecast(fit, h = 12)
> plot(fc)
using Durbyn
using Durbyn.ExponentialSmoothing
ap = air_passengers();
fit_ets = ets(ap, 12, "ZZZ")
@time fit_ets = ets(ap, 12, "ZZZ");
# 0.011112 seconds
fc_ets = forecast(fit_ets, h = 12)
plot(fc_ets)