Why does my cubature of ODESolution break down with finite limits?

I want to find the multi-dimensional integral of a scalar-valued function with vector argument defined on a rectangle (basically, product of truncated PDFs). The argument of the function comes from solving a system of ODEs.

As the function is defined on a rectangle, it should be sufficient to integrate it in the rectangle and not from [-Inf, Inf]. However, the cubature (and the DifferentialEquations.jl solver) breaks down:

ERROR: Initial condition incompatible with functional form.
Detected an in-place function with an initial condition of type Number or SArray.
This is incompatible because Numbers cannot be mutated, i.e.
`x = 2.0; y = 2.0; x .= y` will error.

If using a immutable initial condition type, please use the out-of-place form.
I.e. define the function `du=f(u,p,t)` instead of attempting to "mutate" the immutable `du`.

If your differential equation function was defined with multiple dispatches and one is
in-place, then the automatic detection will choose in-place. In this case, override the
choice in the problem constructor, i.e. `ODEProblem{false}(f,u0,tspan,p,kwargs...)`.

For a longer discussion on mutability vs immutability and in-place vs out-of-place, see:
https://diffeq.sciml.ai/stable/tutorials/faster_ode_example/#Example-Accelerating-a-Non-Stiff-Equation:-The-Lorenz-Equation


Some of the types have been truncated in the stacktrace for improved reading. To emit complete information
in the stack trace, evaluate `TruncatedStacktraces.VERBOSE[] = true` and re-run the code.

I kinda understand for infinite limits, the cubature changes the variables appropriately. The thing is, whatever the limits are, my code (as far as I understand it) shouldn’t change or cast the ODE solution –whatever flavor of vector x Julia chooses– to Number (why?) or SArray (which I’m not even using).

module Mwe

using DifferentialEquations
using Integrals
using Distributions
using LinearAlgebra
using ForwardDiff

# just to speed things up a bit
const TOL = 1e-1

# some parameters; exact values do not matter
tspan = (0, pi)
p = [1, 1]
t = 22 / 7
# limit the domain of interest
rectangle = (-5, 5)

# ODE somewhat similar to the harmonic oscillator
function f(du, u, p, t)
    du = [u[2], u[1], 0.0]
end

# scalar function with vector argument
function g0(x, p, t)
    return pdf(truncated(Normal(1, 1), rectangle...), x[1]) *
           pdf(truncated(Normal(1, 1), rectangle...), x[2]) *
           pdf(truncated(Normal(1, 1), rectangle...), x[3])
end

function g1(x, p, t)
    # find the initial condition for a given point
    function tmp(y)
        prob = ODEProblem(f, y, reverse(tspan), p)
        sol = solve(prob, AutoTsit5(Vern9());
            abstol = TOL, reltol = TOL)
        return sol(tspan[end] - t)
    end
    # use the found IC in g0
    return g0(tmp(x), p, 0.0) * abs(det(ForwardDiff.jacobian(tmp, x)))
end

# Integrate everywhere
function x1(jpdf, x::Number, p, t)
    prob = IntegralProblem((tail, p) -> jpdf([x; tail], p, t),
        [-5, -Inf],
        [5, Inf], p)
    sol = solve(prob, HCubatureJL();
        reltol = TOL, abstol = TOL)
    return sol.u
end

# Truncate in a rectangle
function x1_broken(jpdf, x::Number, p, t)
    prob = IntegralProblem((tail, p) -> jpdf([x; tail], p, t),
        [-5, rectangle[1]],
        [5, rectangle[2]], p)
    sol = solve(prob, HCubatureJL();
        reltol = TOL, abstol = TOL)
    return sol.u
end

@show g0(rand(3), p, t)
@show g1(rand(3), p, t)

# this works
@show x1(g1, 3.0, p, t)

# this doesn't
@show x1_broken(g1, 3.0, p, t)

end

Start by fixing the ODE definition

Could you be more specific?

You can write the right-hand-side function for your ODE system in two ways: In-place, or not in place. For the not-in-place version you would write

function f(u, p, t)
    du = [u[2], u[1], 0.0]
end

This creates a new variable du which is returned by the function f. For the in-place version you want to write

function f!(du, u, p, t)
   du[1] = u[2]
   du[2] = u[1]
   du[3] = 0.0
   return du # (or return nothing)
end

or, more compactly

function f!(du, u, p, t)
   du .= (u[2], u[1], 0.0)
   return du # (or return nothing)
end

Here, the input array du has its contents changed, but no new array is created. The version you have currently does neither of the two accepted versions. It uses the call signature for the in-place version, but returns a new array du rather than mutating its contents.

Edit: I forgot that while du[:] = [a,b,c] is legal, du[:] = (a,b,c) is not.

3 Likes

As the other post says, your formulation is mixing the in-place definition with the out-of-place definition. With du = ..., your derivative is actually 0, so the solution is constant. You either need to f(u,p,t) or mutate du.

1 Like

With

function f(u, p, t)
    du = [u[2], u[1], 0.0]
    return du
end
Full code out-of-place f
module Mwe

using DifferentialEquations
using Integrals
using Distributions
using LinearAlgebra
using ForwardDiff

# just to speed things up a bit
const TOL = 1e-1

# some parameters; exact values do not matter
tspan = (0, pi)
p = [1.0, 1.0]
t = 22.0 / 7.0
# limit the domain of interest
rectangle = (-5, 5)

function f(u, p, t)
    du = [u[2], u[1], 0.0]
    return du
end

# function f!(du, u, p, t)
#     du[1] = u[2]
#     du[2] = u[1]
#     du[3] = 0.0
#     return nothing
# end

# function ff!(du, u, p, t)
#     du .= (u[2], u[1], 0.0)
#     return du # (or return nothing)
# end

# scalar function with vector argument
function g0(x, p, t)
    return pdf(truncated(Normal(1, 1), rectangle...), x[1]) *
           pdf(truncated(Normal(1, 1), rectangle...), x[2]) *
           pdf(truncated(Normal(1, 1), rectangle...), x[3])
end

function g1(x, p, t)
    # find the initial condition for a given point
    function tmp(y)
        prob = ODEProblem(f, y, reverse(tspan), p)
        sol = solve(prob, AutoTsit5(Vern9());
            abstol = TOL, reltol = TOL)
        return sol(tspan[end] - t)
    end
    # use the found IC in g0
    return g0(tmp(x), p, 0.0) * abs(det(ForwardDiff.jacobian(tmp, x)))
end

# Integrate everywhere
function x1(jpdf, x::Number, p, t)
    prob = IntegralProblem((tail, p) -> jpdf([x; tail], p, t),
        [-5, -Inf],
        [5, Inf], p)
    sol = solve(prob, HCubatureJL();
        reltol = TOL, abstol = TOL)
    return sol.u
end

# Truncate in a rectangle
function x1_broken(jpdf, x::Number, p, t)
    prob = IntegralProblem((tail, p) -> jpdf([x; tail], p, t),
        [-5, rectangle[1]],
        [5, rectangle[2]], p)
    sol = solve(prob, HCubatureJL();
        reltol = TOL, abstol = TOL)
    return sol.u
end

@show g0(rand(3), p, t)
@show g1(rand(3), p, t)

# this works
@show x1(g1, 3.0, p, t)

# this doesn't
@show x1_broken(g1, 3.0, p, t)

end

I get (spoiler alert: I do not ask for Float32 nor I use a GPGPU)

ERROR: Detected non-constant types in an out-of-place ODE solve, i.e. for
`du = f(u,p,t)` we see `typeof(du) !== typeof(u/t)`. This is not
supported by OrdinaryDiffEq.jl's solvers. Please either make `f`
type-constant (i.e. typeof(du) === typeof(u/t)) or use the mutating
in-place form `f(du,u,p,t)` (which is type-constant by construction).

Note that one common case for this is when computing with GPUs, using
`Float32` for `u0` and `Float64` for `tspan`. To correct this, ensure
that the element type of `tspan` matches the preferred compute type,
for example `ODEProblem(f,0f0,(0f0,1f0))` for `Float32`-based time.

typeof(u/t) = StaticArraysCore.MVector{3, Float64}
typeof(du) = Vector{Float64}

With

function f!(du, u, p, t)
    du[1] = u[2]
    du[2] = u[1]
    du[3] = 0.0
    return nothing
end
Full code in-place version 1
module Mwe

using DifferentialEquations
using Integrals
using Distributions
using LinearAlgebra
using ForwardDiff

# just to speed things up a bit
const TOL = 1e-1

# some parameters; exact values do not matter
tspan = (0, pi)
p = [1.0, 1.0]
t = 22.0 / 7.0
# limit the domain of interest
rectangle = (-5, 5)

# function f(u, p, t)
#     du = [u[2], u[1], 0.0]
#     return du
# end

function f!(du, u, p, t)
    du[1] = u[2]
    du[2] = u[1]
    du[3] = 0.0
    return nothing
end

# function ff!(du, u, p, t)
#     du .= (u[2], u[1], 0.0)
#     return du # (or return nothing)
# end

# scalar function with vector argument
function g0(x, p, t)
    return pdf(truncated(Normal(1, 1), rectangle...), x[1]) *
           pdf(truncated(Normal(1, 1), rectangle...), x[2]) *
           pdf(truncated(Normal(1, 1), rectangle...), x[3])
end

function g1(x, p, t)
    # find the initial condition for a given point
    function tmp(y)
        prob = ODEProblem(f!, y, reverse(tspan), p)
        sol = solve(prob, AutoTsit5(Vern9());
            abstol = TOL, reltol = TOL)
        return sol(tspan[end] - t)
    end
    # use the found IC in g0
    return g0(tmp(x), p, 0.0) * abs(det(ForwardDiff.jacobian(tmp, x)))
end

# Integrate everywhere
function x1(jpdf, x::Number, p, t)
    prob = IntegralProblem((tail, p) -> jpdf([x; tail], p, t),
        [-5, -Inf],
        [5, Inf], p)
    sol = solve(prob, HCubatureJL();
        reltol = TOL, abstol = TOL)
    return sol.u
end

# Truncate in a rectangle
function x1_broken(jpdf, x::Number, p, t)
    prob = IntegralProblem((tail, p) -> jpdf([x; tail], p, t),
        [-5, rectangle[1]],
        [5, rectangle[2]], p)
    sol = solve(prob, HCubatureJL();
        reltol = TOL, abstol = TOL)
    return sol.u
end

@show g0(rand(3), p, t)
@show g1(rand(3), p, t)

# this works
@show x1(g1, 3.0, p, t)

# this doesn't
@show x1_broken(g1, 3.0, p, t)

end

I get the same error as in the OP

ERROR: Initial condition incompatible with functional form.
Detected an in-place function with an initial condition of type Number or SArray.
This is incompatible because Numbers cannot be mutated, i.e.
`x = 2.0; y = 2.0; x .= y` will error.

If using a immutable initial condition type, please use the out-of-place form.
I.e. define the function `du=f(u,p,t)` instead of attempting to "mutate" the immutable `du`.

If your differential equation function was defined with multiple dispatches and one is
in-place, then the automatic detection will choose in-place. In this case, override the
choice in the problem constructor, i.e. `ODEProblem{false}(f,u0,tspan,p,kwargs...)`.

For a longer discussion on mutability vs immutability and in-place vs out-of-place, see:
https://diffeq.sciml.ai/stable/tutorials/faster_ode_example/#Example-Accelerating-a-Non-Stiff-Equation:-The-Lorenz-Equation


Some of the types have been truncated in the stacktrace for improved reading. To emit complete information
in the stack trace, evaluate `TruncatedStacktraces.VERBOSE[] = true` and re-run the code.

With (just in case, you never know)

function ff!(du, u, p, t)
    du .= (u[2], u[1], 0.0)
    return du # (or return nothing)
end

I get the same error again

ERROR: Initial condition incompatible with functional form.
Detected an in-place function with an initial condition of type Number or SArray.
This is incompatible because Numbers cannot be mutated, i.e.
`x = 2.0; y = 2.0; x .= y` will error.

If using a immutable initial condition type, please use the out-of-place form.
I.e. define the function `du=f(u,p,t)` instead of attempting to "mutate" the immutable `du`.

If your differential equation function was defined with multiple dispatches and one is
in-place, then the automatic detection will choose in-place. In this case, override the
choice in the problem constructor, i.e. `ODEProblem{false}(f,u0,tspan,p,kwargs...)`.

For a longer discussion on mutability vs immutability and in-place vs out-of-place, see:
https://diffeq.sciml.ai/stable/tutorials/faster_ode_example/#Example-Accelerating-a-Non-Stiff-Equation:-The-Lorenz-Equation


Some of the types have been truncated in the stacktrace for improved reading. To emit complete information
in the stack trace, evaluate `TruncatedStacktraces.VERBOSE[] = true` and re-run the code.

Thanks for spelling out all the options!

Okay, I acknowledge that I have problems with in-place functions and mutations (because they are confusing and require ., :, @views or whatever else to “just work”) and my first definition of the system returns the same vector for all time points, but why even with this constant solution the quadrature breaks down with finite limits while it somehow works with Inf?

The problem is somehow method-dependent. E.g. when using Trapezoid() the code

module Mwe

using DifferentialEquations
using Integrals
using Distributions
using LinearAlgebra
using ForwardDiff

# just to speed things up a bit
const TOL = 1e-1

# some parameters; exact values do not matter
tspan = (0, pi + 0.0)
p = [1.0, 1.0]
t = 22.0 / 7.0
# limit the domain of interest
rectangle = (-5, 5)

function f(u, p, t)
    du = [u[2], u[1], 0.0]
    return du
end

# scalar function with vector argument
function g0(x, p, t)
    return pdf(truncated(Normal(1, 1), rectangle...), x[1]) *
           pdf(truncated(Normal(1, 1), rectangle...), x[2]) *
           pdf(truncated(Normal(1, 1), rectangle...), x[3])
end

function g1(x, p, t)
    # find the initial condition for a given point
    function tmp(y)
        prob = ODEProblem(f, y, reverse(tspan), p)
        sol = solve(prob, Trapezoid(), dt = pi / 10)
        return sol(tspan[end] - t)
    end
    # use the found IC in g0
    return g0(tmp(x), p, 0.0) * abs(det(ForwardDiff.jacobian(tmp, x)))
end

# Truncate in a rectangle
function x1_broken(jpdf, x::Number, p, t)
    prob = IntegralProblem((tail, p) -> jpdf([x; tail], p, t),
        [-5, rectangle[1]],
        [5, rectangle[2]], p)
    sol = solve(prob, HCubatureJL();
        reltol = TOL, abstol = TOL)
    return sol.u
end

@show g0(rand(3), p, t)
@show g1(rand(3), p, t)

# this doesn't
@show x1_broken(g1, 3.0, p, t)

end

outputs

g0(rand(3), p, t) = 0.03282973041989611
g1(rand(3), p, t) = 0.004435854935625869
ERROR: MethodError: Cannot `convert` an object of type LinearAlgebra.LU{Float64, Matrix{Float64}, Vector{Int64}} to an object of type StaticArrays.LU{LinearAlgebra.LowerTriangular{Float64, StaticArraysCore.SMatrix{3, 3, Float64, 9}}, LinearAlgebra.UpperTriangular{Float64, StaticArraysCore.SMatrix{3, 3, Float64, 9}}, StaticArraysCore.SVector{3, Int64}}

Closest candidates are:
  convert(::Type{T}, ::T) where T
   @ Base Base.jl:84
  (::Type{StaticArrays.LU{L, U, p}} where {L, U, p})(::Any, ::Any, ::Any)
   @ StaticArrays ~/.julia/packages/StaticArrays/PLKkM/src/lu.jl:3

Can you post the full stack trace? You dropped off the part that would show where this is coming from.

My guess it’s something in HCubature which wants to use StaticArrays. In which case the answer would be:

function f(u, p, t)
    du = eltype(u)([u[2], u[1], 0.0])
    return du
end

Sure, sorry for not pasting it before.
Also, I’ve updated the packages (including, e.g., StaticArrays; dunno if it’s relevant):

g0(rand(3), p, t) = 0.022326665335801195
g1(rand(3), p, t) = 1.638882744980475e-6
ERROR: MethodError: Cannot `convert` an object of type LinearAlgebra.LU{Float64, Matrix{Float64}, Vector{Int64}} to an object of type StaticArrays.LU{LinearAlgebra.LowerTriangular{Float64, StaticArraysCore.SMatrix{3, 3, Float64, 9}}, LinearAlgebra.UpperTriangular{Float64, StaticArraysCore.SMatrix{3, 3, Float64, 9}}, StaticArraysCore.SVector{3, Int64}}

Closest candidates are:
  convert(::Type{T}, ::T) where T
   @ Base Base.jl:84
  (::Type{StaticArrays.LU{L, U, p}} where {L, U, p})(::Any, ::Any, ::Any)
   @ StaticArrays ~/.julia/packages/StaticArrays/eGKzB/src/lu.jl:3

Stacktrace:
  [1] setproperty!(x::OrdinaryDiffEq.NLNewtonConstantCache{…}, f::Symbol, v::LinearAlgebra.LU{…})
    @ Base ./Base.jl:40
  [2] update_W!(nlsolver::OrdinaryDiffEq.NLSolver{…}, integrator::OrdinaryDiffEq.ODEIntegrator{…}, cache::OrdinaryDiffEq.TrapezoidConstantCache{…}, dtgamma::Float64, repeat_step::Bool, newJW::Nothing)
    @ OrdinaryDiffEq ~/.julia/packages/OrdinaryDiffEq/2nLli/src/derivative_utils.jl:832
  [3] update_W!(nlsolver::OrdinaryDiffEq.NLSolver{…}, integrator::OrdinaryDiffEq.ODEIntegrator{…}, cache::OrdinaryDiffEq.TrapezoidConstantCache{…}, dtgamma::Float64, repeat_step::Bool)
    @ OrdinaryDiffEq ~/.julia/packages/OrdinaryDiffEq/2nLli/src/derivative_utils.jl:822
  [4] nlsolve!(nlsolver::OrdinaryDiffEq.NLSolver{…}, integrator::OrdinaryDiffEq.ODEIntegrator{…}, cache::OrdinaryDiffEq.TrapezoidConstantCache{…}, repeat_step::Bool)
    @ OrdinaryDiffEq ~/.julia/packages/OrdinaryDiffEq/2nLli/src/nlsolve/nlsolve.jl:27
  [5] perform_step!(integrator::OrdinaryDiffEq.ODEIntegrator{…}, cache::OrdinaryDiffEq.TrapezoidConstantCache{…}, repeat_step::Bool)
    @ OrdinaryDiffEq ~/.julia/packages/OrdinaryDiffEq/2nLli/src/perform_step/sdirk_perform_step.jl:230
  [6] perform_step!
    @ OrdinaryDiffEq ~/.julia/packages/OrdinaryDiffEq/2nLli/src/perform_step/sdirk_perform_step.jl:211 [inlined]
  [7] solve!(integrator::OrdinaryDiffEq.ODEIntegrator{…})
    @ OrdinaryDiffEq ~/.julia/packages/OrdinaryDiffEq/2nLli/src/solve.jl:537
  [8] __solve(::SciMLBase.ODEProblem{…}, ::OrdinaryDiffEq.Trapezoid{…}; kwargs::@Kwargs{…})
    @ OrdinaryDiffEq ~/.julia/packages/OrdinaryDiffEq/2nLli/src/solve.jl:6
  [9] __solve
    @ OrdinaryDiffEq ~/.julia/packages/OrdinaryDiffEq/2nLli/src/solve.jl:1 [inlined]
 [10] #solve_call#34
    @ DiffEqBase ~/.julia/packages/DiffEqBase/eLhx9/src/solve.jl:609 [inlined]
 [11] solve_call
    @ DiffEqBase ~/.julia/packages/DiffEqBase/eLhx9/src/solve.jl:567 [inlined]
 [12] #solve_up#42
    @ DiffEqBase ~/.julia/packages/DiffEqBase/eLhx9/src/solve.jl:1058 [inlined]
 [13] solve_up
    @ DiffEqBase ~/.julia/packages/DiffEqBase/eLhx9/src/solve.jl:1044 [inlined]
 [14] #solve#40
    @ DiffEqBase ~/.julia/packages/DiffEqBase/eLhx9/src/solve.jl:981 [inlined]
 [15] (::Main.Mwe.var"#tmp#1"{Vector{Float64}, Float64})(y::StaticArraysCore.SVector{3, Float64})
    @ Main.Mwe ~/Code/test/test.jl:35
 [16] g1(x::StaticArraysCore.SVector{3, Float64}, p::Vector{Float64}, t::Float64)
    @ Main.Mwe ~/Code/test/test.jl:39
 [17] #2
    @ ~/Code/test/test.jl:44 [inlined]
 [18] IntegralFunction
    @ ~/.julia/packages/SciMLBase/LBy2M/src/scimlfunctions.jl:2358 [inlined]
 [19] #46
    @ ~/.julia/packages/Integrals/d5Wr6/src/Integrals.jl:113 [inlined]
 [20] (::HCubature.GenzMalik{…})(f::Integrals.var"#46#48"{…}, a::StaticArraysCore.SVector{…}, b::StaticArraysCore.SVector{…}, norm::typeof(LinearAlgebra.norm))
    @ HCubature ~/.julia/packages/HCubature/QvyJW/src/genz-malik.jl:121
 [21] hcubature_(f::Integrals.var"#46#48"{…}, a::StaticArraysCore.SVector{…}, b::StaticArraysCore.SVector{…}, norm::typeof(LinearAlgebra.norm), rtol_::Float64, atol::Float64, maxevals::Int64, initdiv::Int64)
    @ HCubature ~/.julia/packages/HCubature/QvyJW/src/HCubature.jl:61
 [22] hcubature_(f::Integrals.var"#46#48"{…}, a::Vector{…}, b::Vector{…}, norm::Function, rtol::Float64, atol::Float64, maxevals::Int64, initdiv::Int64)
    @ HCubature ~/.julia/packages/HCubature/QvyJW/src/HCubature.jl:129
 [23] hcubature
    @ ~/.julia/packages/HCubature/QvyJW/src/HCubature.jl:178 [inlined]
 [24] __solvebp_call(prob::SciMLBase.IntegralProblem{…}, alg::Integrals.HCubatureJL{…}, sensealg::Integrals.ReCallVJP{…}, domain::Tuple{…}, p::Vector{…}; reltol::Float64, abstol::Float64, maxiters::Int64)
    @ Integrals ~/.julia/packages/Integrals/d5Wr6/src/Integrals.jl:121
 [25] __solvebp_call
    @ Integrals ~/.julia/packages/Integrals/d5Wr6/src/Integrals.jl:102 [inlined]
 [26] #__solvebp_call#4
    @ Integrals ~/.julia/packages/Integrals/d5Wr6/src/common.jl:113 [inlined]
 [27] __solvebp_call
    @ Integrals ~/.julia/packages/Integrals/d5Wr6/src/common.jl:112 [inlined]
 [28] __solvebp
    @ Integrals ~/.julia/packages/Integrals/d5Wr6/src/Integrals.jl:65 [inlined]
 [29] solve!(cache::Integrals.IntegralCache{…})
    @ Integrals ~/.julia/packages/Integrals/d5Wr6/src/common.jl:103
 [30] solve(prob::SciMLBase.IntegralProblem{…}, alg::Integrals.HCubatureJL{…}; kwargs::@Kwargs{…})
    @ Integrals ~/.julia/packages/Integrals/d5Wr6/src/common.jl:99
 [31] x1_broken(jpdf::typeof(Main.Mwe.g1), x::Float64, p::Vector{Float64}, t::Float64)
    @ Main.Mwe ~/Code/test/test.jl:47
 [32] macro expansion
    @ show.jl:1181 [inlined]
 [33] top-level scope
    @ ~/Code/test/test.jl:56
Some type information was truncated. Use `show(err)` to see complete types.
  [0c46a032] DifferentialEquations v7.12.0
  [31c24e10] Distributions v0.25.107
  [f6369f11] ForwardDiff v0.10.36
  [de52edbc] Integrals v4.1.0
  [91a5bcdd] Plots v1.39.0
Manifest
[47edcb42] ADTypes v0.2.6
⌅ [79e6a3ab] Adapt v3.7.2
  [ec485272] ArnoldiMethod v0.2.0
  [4fba245c] ArrayInterface v7.7.0
  [4c555306] ArrayLayouts v1.5.2
  [aae01518] BandedMatrices v1.4.0
  [d1d4a3ce] BitFlags v0.1.8
  [62783981] BitTwiddlingConvenienceFunctions v0.1.5
⌃ [764a87c0] BoundaryValueDiffEq v5.6.0
  [fa961155] CEnum v0.5.0
  [2a0fbf3d] CPUSummary v0.2.4
  [49dc2e85] Calculus v0.5.1
  [fb6a15b2] CloseOpenIntervals v0.1.12
  [944b1d66] CodecZlib v0.7.3
  [35d6a980] ColorSchemes v3.24.0
  [3da002f7] ColorTypes v0.11.4
  [c3611d14] ColorVectorSpace v0.10.0
  [5ae59095] Colors v0.12.10
  [861a8166] Combinatorics v1.0.2
  [38540f10] CommonSolve v0.2.4
  [bbf7d656] CommonSubexpressions v0.3.0
  [34da2185] Compat v4.12.0
  [2569d6c7] ConcreteStructs v0.2.3
  [f0e56b4a] ConcurrentUtilities v2.3.0
  [187b0558] ConstructionBase v1.5.4
  [d38c429a] Contour v0.6.2
  [adafc99b] CpuId v0.3.1
  [9a962f9c] DataAPI v1.15.0
  [864edb3b] DataStructures v0.18.16
  [e2d170a0] DataValueInterfaces v1.0.0
  [bcd4f6db] DelayDiffEq v5.46.0
  [8bb1440f] DelimitedFiles v1.9.1
  [2b5f629d] DiffEqBase v6.146.0
  [459566f4] DiffEqCallbacks v2.36.1
  [77a26b50] DiffEqNoiseProcess v5.20.0
  [163ba53b] DiffResults v1.1.0
  [b552c78f] DiffRules v1.15.1
  [0c46a032] DifferentialEquations v7.12.0
  [b4f34e82] Distances v0.10.11
  [31c24e10] Distributions v0.25.107
  [ffbed154] DocStringExtensions v0.9.3
  [fa6b7ba4] DualNumbers v0.6.8
  [4e289a0a] EnumX v1.0.4
  [f151be2c] EnzymeCore v0.6.5
  [460bff9d] ExceptionUnwrapping v0.1.10
  [d4d017d3] ExponentialUtilities v1.25.0
  [e2ba6199] ExprTools v0.1.10
  [c87230d0] FFMPEG v0.4.1
  [9d29842c] FastAlmostBandedMatrices v0.1.0
  [7034ab61] FastBroadcast v0.2.8
  [9aa1b823] FastClosures v0.3.2
  [29a986be] FastLapackInterface v2.0.0
  [1a297f60] FillArrays v1.9.3
  [6a86dc24] FiniteDiff v2.22.0
  [53c48c17] FixedPointNumbers v0.8.4
  [59287772] Formatting v0.4.2
  [f6369f11] ForwardDiff v0.10.36
  [069b7b12] FunctionWrappers v1.1.3
  [77dc65aa] FunctionWrappersWrappers v0.1.3
  [d9f16b24] Functors v0.4.5
⌃ [46192b85] GPUArraysCore v0.1.5
⌅ [28b8d3ca] GR v0.72.10
  [c145ed77] GenericSchur v0.5.3
  [86223c79] Graphs v1.9.0
  [42e2da0e] Grisu v1.0.2
  [19dc6840] HCubature v1.5.1
  [cd3eb016] HTTP v1.10.1
  [3e5b6fbb] HostCPUFeatures v0.1.16
  [34004b35] HypergeometricFunctions v0.3.23
  [615f187c] IfElse v0.1.1
  [d25df0c9] Inflate v0.1.4
  [de52edbc] Integrals v4.1.0
  [92d709cd] IrrationalConstants v0.2.2
  [82899510] IteratorInterfaceExtensions v1.0.0
  [1019f520] JLFzf v0.1.7
  [692b3bcd] JLLWrappers v1.5.0
  [682c06a0] JSON v0.21.4
  [ccbc3e58] JumpProcesses v9.10.1
  [ef3ab10e] KLU v0.4.1
  [ba0b0d4f] Krylov v0.9.5
  [b964fa9f] LaTeXStrings v1.3.1
  [23fbe1c1] Latexify v0.16.1
  [a5e1c1ea] LatinHypercubeSampling v1.9.0
  [73f95e8e] LatticeRules v0.0.1
  [10f19ff3] LayoutPointers v0.1.15
  [50d2b5c4] Lazy v0.15.1
  [5078a376] LazyArrays v1.8.3
  [2d8b4e74] LevyArea v1.0.0
  [d3d80556] LineSearches v7.2.0
  [7ed4a6bd] LinearSolve v2.22.1
  [2ab3a3ac] LogExpFunctions v0.3.26
  [e6f89c97] LoggingExtras v1.0.3
  [bdcacae8] LoopVectorization v0.12.166
  [1914dd2f] MacroTools v0.5.13
  [d125e4d3] ManualMemory v0.1.8
  [a3b82374] MatrixFactorizations v2.1.0
  [bb5d69b7] MaybeInplace v0.1.1
  [739be429] MbedTLS v1.1.9
  [442fdcdd] Measures v0.3.2
  [e1d29d7a] Missings v1.1.0
  [4886b29c] MonteCarloIntegration v0.1.2
  [46d2c3a1] MuladdMacro v0.2.4
  [d41bc354] NLSolversBase v7.8.3
  [2774e3e8] NLsolve v4.5.1
  [77ba4419] NaNMath v1.0.2
  [8913a72c] NonlinearSolve v3.4.0
  [6fe1bfb0] OffsetArrays v1.13.0
  [4d8831e6] OpenSSL v1.4.1
  [429524aa] Optim v1.7.8
  [bac558e1] OrderedCollections v1.6.3
  [1dea7af3] OrdinaryDiffEq v6.69.0
  [90014a1f] PDMats v0.11.31
  [65ce6f38] PackageExtensionCompat v1.0.2
  [d96e819e] Parameters v0.12.3
  [69de0a69] Parsers v2.8.1
  [b98c9c47] Pipe v1.3.0
  [ccf2f8ad] PlotThemes v3.1.0
  [995b91a9] PlotUtils v1.4.0
  [91a5bcdd] Plots v1.39.0
  [e409e4f3] PoissonRandom v0.4.4
  [f517fe37] Polyester v0.7.9
  [1d0040c9] PolyesterWeave v0.2.1
  [85a6dd25] PositiveFactorizations v0.2.4
  [d236fae5] PreallocationTools v0.4.17
  [aea7be01] PrecompileTools v1.2.0
  [21216c6a] Preferences v1.4.1
  [1fd47b50] QuadGK v2.9.4
⌅ [8a4e6c94] QuasiMonteCarlo v0.2.9
  [74087812] Random123 v1.6.2
  [e6cf234a] RandomNumbers v1.5.3
  [3cdcf5f2] RecipesBase v1.3.4
  [01d81517] RecipesPipeline v0.6.12
  [731186ca] RecursiveArrayTools v3.5.3
  [f2c3362d] RecursiveFactorization v0.2.21
  [189a3867] Reexport v1.2.2
  [05181044] RelocatableFolders v1.0.1
  [ae029012] Requires v1.3.0
  [ae5879a3] ResettableStacks v1.1.1
  [79098fc4] Rmath v0.7.1
  [7e49a35a] RuntimeGeneratedFunctions v0.5.12
  [94e857df] SIMDTypes v0.1.0
  [476501e8] SLEEFPirates v0.6.42
  [0bca4576] SciMLBase v2.19.0
  [c0aeaf25] SciMLOperators v0.3.7
  [6c6a2e73] Scratch v1.2.1
  [efcf1570] Setfield v1.1.1
  [992d4aef] Showoff v1.0.3
  [777ac1f9] SimpleBufferStream v1.1.0
  [727e6d20] SimpleNonlinearSolve v1.3.1
  [699a6c99] SimpleTraits v0.9.4
  [ce78b400] SimpleUnPack v1.1.0
  [ed01d8cd] Sobol v1.5.0
  [a2af1166] SortingAlgorithms v1.2.1
  [47a9eef4] SparseDiffTools v2.15.0
  [e56a9233] Sparspak v0.3.9
  [276daf66] SpecialFunctions v2.3.1
  [860ef19b] StableRNGs v1.0.1
  [aedffcd0] Static v0.8.8
  [0d7ed370] StaticArrayInterface v1.5.0
  [90137ffa] StaticArrays v1.9.1
  [1e83bf80] StaticArraysCore v1.4.2
  [82ae8749] StatsAPI v1.7.0
  [2913bbd2] StatsBase v0.34.2
  [4c63d2b9] StatsFuns v1.3.0
  [9672c7b4] SteadyStateDiffEq v2.0.1
  [789caeaf] StochasticDiffEq v6.64.0
  [7792a7ef] StrideArraysCore v0.5.2
  [c3572dad] Sundials v4.23.1
  [2efcf032] SymbolicIndexingInterface v0.3.3
  [3783bdb8] TableTraits v1.0.1
  [bd369af6] Tables v1.11.1
  [62fd8b95] TensorCore v0.1.1
  [8290d209] ThreadingUtilities v0.5.2
  [3bb67fe8] TranscodingStreams v0.10.2
  [d5829a12] TriangularSolve v0.1.20
  [410a4b4d] Tricks v0.1.8
  [781d530d] TruncatedStacktraces v1.4.0
  [5c2747f8] URIs v1.5.1
  [3a884ed6] UnPack v1.0.2
  [1cfade01] UnicodeFun v0.4.1
  [1986cc42] Unitful v1.19.0
  [45397f5d] UnitfulLatexify v1.6.3
  [41fe7b60] Unzip v0.2.0
  [3d5dd08c] VectorizationBase v0.21.65
  [19fa3120] VertexSafeGraphs v0.2.0
  [6e34b625] Bzip2_jll v1.0.8+1
  [83423d85] Cairo_jll v1.16.1+1
  [2702e6a9] EpollShim_jll v0.0.20230411+0
  [2e619515] Expat_jll v2.5.0+0
  [b22a6f82] FFMPEG_jll v4.4.4+1
  [a3f928ae] Fontconfig_jll v2.13.93+0
  [d7e528f0] FreeType2_jll v2.13.1+0
  [559328eb] FriBidi_jll v1.0.10+0
  [0656b61e] GLFW_jll v3.3.9+0
⌅ [d2c73de3] GR_jll v0.72.10+0
  [78b55507] Gettext_jll v0.21.0+0
  [7746bdde] Glib_jll v2.76.5+0
  [3b182d85] Graphite2_jll v1.3.14+0
  [2e76f6c2] HarfBuzz_jll v2.8.1+1
  [1d5cc7b8] IntelOpenMP_jll v2024.0.2+0
  [aacddb02] JpegTurbo_jll v3.0.1+0
  [c1c5ebd0] LAME_jll v3.100.1+0
  [88015f11] LERC_jll v3.0.0+1
  [1d63c593] LLVMOpenMP_jll v15.0.7+0
  [dd4b983a] LZO_jll v2.10.1+0
⌅ [e9f186c6] Libffi_jll v3.2.2+1
  [d4300ac3] Libgcrypt_jll v1.8.7+0
  [7e76a0d4] Libglvnd_jll v1.6.0+0
  [7add5ba3] Libgpg_error_jll v1.42.0+0
  [94ce4f54] Libiconv_jll v1.17.0+0
  [4b2f31a3] Libmount_jll v2.35.0+0
⌅ [89763e89] Libtiff_jll v4.5.1+1
  [38a345b3] Libuuid_jll v2.36.0+0
  [856f044c] MKL_jll v2024.0.0+0
  [e7412a2a] Ogg_jll v1.3.5+1
  [458c3c95] OpenSSL_jll v3.0.12+0
  [efe28fd5] OpenSpecFun_jll v0.5.5+0
  [91d4177d] Opus_jll v1.3.2+0
  [30392449] Pixman_jll v0.42.2+0
  [c0090381] Qt6Base_jll v6.5.3+1
  [f50d1b31] Rmath_jll v0.4.0+0
⌅ [fb77eaff] Sundials_jll v5.2.2+0
  [a44049a8] Vulkan_Loader_jll v1.3.243+0
  [a2964d1f] Wayland_jll v1.21.0+1
  [2381bf8a] Wayland_protocols_jll v1.31.0+0
  [02c8fc9c] XML2_jll v2.12.2+0
  [aed1982a] XSLT_jll v1.1.34+0
  [ffd25f8a] XZ_jll v5.4.5+0
  [f67eecfb] Xorg_libICE_jll v1.0.10+1
  [c834827a] Xorg_libSM_jll v1.2.3+0
  [4f6342f7] Xorg_libX11_jll v1.8.6+0
  [0c0b7dd1] Xorg_libXau_jll v1.0.11+0
  [935fb764] Xorg_libXcursor_jll v1.2.0+4
  [a3789734] Xorg_libXdmcp_jll v1.1.4+0
  [1082639a] Xorg_libXext_jll v1.3.4+4
  [d091e8ba] Xorg_libXfixes_jll v5.0.3+4
  [a51aa0fd] Xorg_libXi_jll v1.7.10+4
  [d1454406] Xorg_libXinerama_jll v1.1.4+4
  [ec84b674] Xorg_libXrandr_jll v1.5.2+4
  [ea2f1a96] Xorg_libXrender_jll v0.9.10+4
  [14d82f49] Xorg_libpthread_stubs_jll v0.1.1+0
  [c7cfdc94] Xorg_libxcb_jll v1.15.0+0
  [cc61e674] Xorg_libxkbfile_jll v1.1.2+0
  [e920d4aa] Xorg_xcb_util_cursor_jll v0.1.4+0
  [12413925] Xorg_xcb_util_image_jll v0.4.0+1
  [2def613f] Xorg_xcb_util_jll v0.4.0+1
  [975044d2] Xorg_xcb_util_keysyms_jll v0.4.0+1
  [0d47668e] Xorg_xcb_util_renderutil_jll v0.3.9+1
  [c22f9ab0] Xorg_xcb_util_wm_jll v0.4.1+1
  [35661453] Xorg_xkbcomp_jll v1.4.6+0
  [33bec58e] Xorg_xkeyboard_config_jll v2.39.0+0
  [c5fb5394] Xorg_xtrans_jll v1.5.0+0
  [3161d3a3] Zstd_jll v1.5.5+0
  [35ca27e7] eudev_jll v3.2.9+0
  [214eeab7] fzf_jll v0.43.0+0
  [1a1c6b14] gperf_jll v3.1.1+0
  [a4ae2306] libaom_jll v3.4.0+0
  [0ac62f75] libass_jll v0.15.1+0
  [2db6ffa8] libevdev_jll v1.11.0+0
  [f638f0a6] libfdk_aac_jll v2.0.2+0
  [36db933b] libinput_jll v1.18.0+0
  [b53b4c65] libpng_jll v1.6.40+0
  [f27f6e37] libvorbis_jll v1.3.7+1
  [009596ad] mtdev_jll v1.1.6+0
  [1270edf5] x264_jll v2021.5.5+0
  [dfaa095f] x265_jll v3.5.0+0
  [d8fb68d0] xkbcommon_jll v1.4.1+1
  [0dad84c5] ArgTools v1.1.1
  [56f22d72] Artifacts
  [2a0f44e3] Base64
  [ade2ca70] Dates
  [8ba89e20] Distributed
  [f43a241f] Downloads v1.6.0
  [7b1f6079] FileWatching
  [9fa8497b] Future
  [b77e0a4c] InteractiveUtils
  [4af54fe1] LazyArtifacts
  [b27032c2] LibCURL v0.6.4
  [76f85450] LibGit2
  [8f399da3] Libdl
  [37e2e46d] LinearAlgebra
  [56ddb016] Logging
  [d6f4376e] Markdown
  [a63ad114] Mmap
  [ca575930] NetworkOptions v1.2.0
  [44cfe95a] Pkg v1.10.0
  [de0858da] Printf
  [3fa0cd96] REPL
  [9a3f8284] Random
  [ea8e919c] SHA v0.7.0
  [9e88b42a] Serialization
  [1a1011a3] SharedArrays
  [6462fe0b] Sockets
  [2f01184e] SparseArrays v1.10.0
  [10745b16] Statistics v1.10.0
  [4607b0f0] SuiteSparse
  [fa267f1f] TOML v1.0.3
  [a4e569a6] Tar v1.10.0
  [8dfed614] Test
  [cf7118a7] UUIDs
  [4ec0a83e] Unicode
  [e66e0078] CompilerSupportLibraries_jll v1.0.5+1
  [deac9b47] LibCURL_jll v8.4.0+0
  [e37daf67] LibGit2_jll v1.6.4+0
  [29816b5a] LibSSH2_jll v1.11.0+1
  [c8ffd9c3] MbedTLS_jll v2.28.2+1
  [14a3606d] MozillaCACerts_jll v2023.1.10
  [4536629a] OpenBLAS_jll v0.3.23+2
  [05823500] OpenLibm_jll v0.8.1+2
  [efcefdf7] PCRE2_jll v10.42.0+1
  [bea87d4a] SuiteSparse_jll v7.2.1+1
  [83775a58] Zlib_jll v1.2.13+1
  [8e850b90] libblastrampoline_jll v5.8.0+1
  [8e850ede] nghttp2_jll v1.52.0+1
  [3f19e933] p7zip_jll v17.4.0+2
Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m`

It seems strange that the result of Euler() is fine for HCubature, but with Trapezoid() it breaks down. Shouldn’t solve() return the same for the same problem, even if different methods are used?

Thanks. Unfortunately, this produces

g0(rand(3), p, t) = 0.045113147679716484

ERROR: MethodError: no method matching Float64(::Vector{Float64})

Closest candidates are:
  Float64(::Float32)
   @ Base float.jl:261
  Float64(::Int128)
   @ Base float.jl:200
  Float64(::UInt8)
   @ Base float.jl:165
  ...

Stacktrace:
  [1] f(u::Vector{Float64}, p::Vector{Float64}, t::Float64)
    @ Main.Mwe ~/Code/test/test.jl:20
  [2] (::SciMLBase.ODEFunction{…})(::Vector{…}, ::Vararg{…})
    @ SciMLBase ~/.julia/packages/SciMLBase/LBy2M/src/scimlfunctions.jl:2355
  [3] initialize!(integrator::OrdinaryDiffEq.ODEIntegrator{…}, cache::OrdinaryDiffEq.TrapezoidConstantCache{…})
    @ OrdinaryDiffEq ~/.julia/packages/OrdinaryDiffEq/2nLli/src/perform_step/sdirk_perform_step.jl:23
  [4] __init(prob::SciMLBase.ODEProblem{…}, alg::OrdinaryDiffEq.Trapezoid{…}, timeseries_init::Tuple{}, ts_init::Tuple{}, ks_init::Tuple{}, recompile::Type{…}; saveat::Tuple{}, tstops::Tuple{}, d_discontinuities::Tuple{}, save_idxs::Nothing, save_everystep::Bool, save_on::Bool, save_start::Bool, save_end::Nothing, callback::Nothing, dense::Bool, calck::Bool, dt::Float64, dtmin::Float64, dtmax::Float64, force_dtmin::Bool, adaptive::Bool, gamma::Rational{…}, abstol::Nothing, reltol::Nothing, qmin::Rational{…}, qmax::Int64, qsteady_min::Int64, qsteady_max::Rational{…}, beta1::Nothing, beta2::Nothing, qoldinit::Rational{…}, controller::Nothing, fullnormalize::Bool, failfactor::Int64, maxiters::Int64, internalnorm::typeof(DiffEqBase.ODE_DEFAULT_NORM), internalopnorm::typeof(LinearAlgebra.opnorm), isoutofdomain::typeof(DiffEqBase.ODE_DEFAULT_ISOUTOFDOMAIN), unstable_check::typeof(DiffEqBase.ODE_DEFAULT_UNSTABLE_CHECK), verbose::Bool, timeseries_errors::Bool, dense_errors::Bool, advance_to_tstop::Bool, stop_at_next_tstop::Bool, initialize_save::Bool, progress::Bool, progress_steps::Int64, progress_name::String, progress_message::typeof(DiffEqBase.ODE_DEFAULT_PROG_MESSAGE), progress_id::Symbol, userdata::Nothing, allow_extrapolation::Bool, initialize_integrator::Bool, alias_u0::Bool, alias_du0::Bool, initializealg::OrdinaryDiffEq.DefaultInit, kwargs::@Kwargs{})
    @ OrdinaryDiffEq ~/.julia/packages/OrdinaryDiffEq/2nLli/src/solve.jl:511
  [5] __init (repeats 5 times)
    @ ~/.julia/packages/OrdinaryDiffEq/2nLli/src/solve.jl:10 [inlined]
  [6] __solve(::SciMLBase.ODEProblem{…}, ::OrdinaryDiffEq.Trapezoid{…}; kwargs::@Kwargs{…})
    @ OrdinaryDiffEq ~/.julia/packages/OrdinaryDiffEq/2nLli/src/solve.jl:5
  [7] __solve
    @ OrdinaryDiffEq ~/.julia/packages/OrdinaryDiffEq/2nLli/src/solve.jl:1 [inlined]
  [8] #solve_call#34
    @ DiffEqBase ~/.julia/packages/DiffEqBase/eLhx9/src/solve.jl:609 [inlined]
  [9] solve_up(prob::SciMLBase.ODEProblem{…}, sensealg::Nothing, u0::Vector{…}, p::Vector{…}, args::OrdinaryDiffEq.Trapezoid{…}; kwargs::@Kwargs{…})
    @ DiffEqBase ~/.julia/packages/DiffEqBase/eLhx9/src/solve.jl:1058
 [10] solve_up
    @ ~/.julia/packages/DiffEqBase/eLhx9/src/solve.jl:1044 [inlined]
 [11] solve(prob::SciMLBase.ODEProblem{…}, args::OrdinaryDiffEq.Trapezoid{…}; sensealg::Nothing, u0::Nothing, p::Nothing, wrap::Val{…}, kwargs::@Kwargs{…})
    @ DiffEqBase ~/.julia/packages/DiffEqBase/eLhx9/src/solve.jl:981
 [12] (::Main.Mwe.var"#tmp#1"{Vector{Float64}, Float64})(y::Vector{Float64})
    @ Main.Mwe ~/Code/test/test.jl:35
 [13] g1(x::Vector{Float64}, p::Vector{Float64}, t::Float64)
    @ Main.Mwe ~/Code/test/test.jl:39
 [14] macro expansion
    @ show.jl:1181 [inlined]
 [15] top-level scope
    @ ~/Code/test/test.jl:53
Some type information was truncated. Use `show(err)` to see complete types.

I think Chris meant to write

This ensures the result Array to have the same element type as the input.

No sorry I meant

function f(u, p, t)
    du = typeof(u)([u[2], u[1], 0.0])
    return du
end

Yeah it’s HCubature introducing static arrays into the user’s function. That is kind of odd and has consequences like this.

1 Like

Ah, okay, and then only Trapezoid fails because it is the one that uses LU which is not compatible with static arrays.

LU is compatible with static arrays, so it’s deeper.

Did the f change I proposed work?

Yes, it did. There is no error anymore. Thank you!

Is there a similar solution for in-place definitions?

You’d have to convert the u0 to an Array. You can cache that array and just .= the static array into it.

Open an issue on Integrals.jl so we can discuss this more. @stevengj is there a separate dispatch into HCubature.jl which doesn’t cause static arrays? Seems like it can be a bit surprising to some users and having a pre-cached array option could be helpful, either in Integrals.jl’s wrapper or HCubature.jl itself.