My code now generates this warning. It still runs but I would like to understand why and if there is a way to make Julia happy and have the warning go away. I am using the latest Julia on Atom, on Windows 10.
Code is after the warning.
└ @ OrdinaryDiffEq C:\Users\Helga\.julia\packages\OrdinaryDiffEq\7mKtS\src\solve.jl:415
┌ Warning: `binary_minheap(xs::AbstractVector{T}) where T` is deprecated, use `BinaryMinHeap(xs)` instead.
│ caller = tstop_saveat_disc_handling at solve.jl:389 [inlined]
└ @ Core C:\Users\Helga\.julia\packages\OrdinaryDiffEq\7mKtS\src\solve.jl:389
┌ Warning: `binary_minheap(xs::AbstractVector{T}) where T` is deprecated, use `BinaryMinHeap(xs)` instead.│ caller = #__init#203(::Int64, ::Array{Float64,1}, ::Array{Float64,1}, ::Array{Float64,1}, ::Nothing, ::Bool, ::Nothing, ::Bool, ::Bool, ::Bool, ::Nothing, ::Bool, ::Bool, ::Float64, ::Bool, ::Rational{Int64}, ::Nothing, ::Nothing, ::Int64, ::Rational{Int64}, ::Int64, ::Rational{Int64}, ::Rational{Int64}, ::Bool, ::Int64, ::Nothing, ::Nothing, ::Int64, ::Float64, ::Float64, ::typeof(DiffEqBase.ODE_DEFAULT_NORM), ::typeof(LinearAlgebra.opnorm), ::typeof(DiffEqBase.ODE_DEFAULT_ISOUTOFDOMAIN), ::typeof(DiffEqBase.ODE_DEFAULT_UNSTABLE_CHECK), ::Bool, ::Bool, ::Bool, ::Bool, ::Bool, ::Bool, ::Bool, ::Bool, ::Int64, ::String, ::typeof(DiffEqBase.ODE_DEFAULT_PROG_MESSAGE), ::Nothing, ::Bool, ::Bool, ::Base.Iterators.Pairs{Union{},Union{},Tuple{},NamedTuple{(),Tuple{}}}, ::typeof(DiffEqBase.__init), ::ODEProblem{Array{Float64,1},Tuple{Float64,Float64},true,Tuple{Int64,Float64,Int64,Int64,Float64,Float64,Int64,Float64,Float64,Float64,Int64,Int64},FoodChain{getfield(Main, Symbol("##17#18")),Nothing,Nothing,Nothing,Nothing,Nothing,Any,Any},Nothing,DiffEqBase.StandardODEProblem}, ::Rosenbrock23{0,true,LinSolveFactorize{typeof(LinearAlgebra.lu!)},DataType}, ::Array{Any,1}, ::Array{Any,1}, ::Array{Any,1}, ::Type{Val{true}}) at solve.jl:407
└ @ OrdinaryDiffEq C:\Users\Helga\.julia\packages\OrdinaryDiffEq\7mKtS\src\solve.jl:407
┌ Warning: `binary_minheap(xs::AbstractVector{T}) where T` is deprecated, use `BinaryMinHeap(xs)` instead.│ caller = #__init#203(::Int64, ::Array{Float64,1}, ::Array{Float64,1}, ::Array{Float64,1}, ::Nothing, ::Bool, ::Nothing, ::Bool, ::Bool, ::Bool, ::Nothing, ::Bool, ::Bool, ::Float64, ::Bool, ::Rational{Int64}, ::Nothing, ::Nothing, ::Int64, ::Rational{Int64}, ::Int64, ::Rational{Int64}, ::Rational{Int64}, ::Bool, ::Int64, ::Nothing, ::Nothing, ::Int64, ::Float64, ::Float64, ::typeof(DiffEqBase.ODE_DEFAULT_NORM), ::typeof(LinearAlgebra.opnorm), ::typeof(DiffEqBase.ODE_DEFAULT_ISOUTOFDOMAIN), ::typeof(DiffEqBase.ODE_DEFAULT_UNSTABLE_CHECK), ::Bool, ::Bool, ::Bool, ::Bool, ::Bool, ::Bool, ::Bool, ::Bool, ::Int64, ::String, ::typeof(DiffEqBase.ODE_DEFAULT_PROG_MESSAGE), ::Nothing, ::Bool, ::Bool, ::Base.Iterators.Pairs{Union{},Union{},Tuple{},NamedTuple{(),Tuple{}}}, ::typeof(DiffEqBase.__init), ::ODEProblem{Array{Float64,1},Tuple{Float64,Float64},true,Tuple{Int64,Float64,Int64,Int64,Float64,Float64,Int64,Float64,Float64,Float64,Int64,Int64},FoodChain{getfield(Main, Symbol("##17#18")),Nothing,Nothing,Nothing,Nothing,Nothing,Any,Any},Nothing,DiffEqBase.StandardODEProblem}, ::Rosenbrock23{0,true,LinSolveFactorize{typeof(LinearAlgebra.lu!)},DataType}, ::Array{Any,1}, ::Array{Any,1}, ::Array{Any,1}, ::Type{Val{true}}) at solve.jl:415
└ @ OrdinaryDiffEq C:\Users\Helga\.julia\packages\OrdinaryDiffEq\7mKtS\src\solve.jl:415
using DifferentialEquations
f = @ode_def_bare FoodChain begin
dBB = r*(1- BB/K)*BB -xI*yIB*BI*((BB^h/(B0^h + BB^h))/eIB)
dBI = -xI*BI + xI*yIB*BI*(BB^h/(B0^h + BB^h))-xT *yTI*BT*((BI^h/(B0^h + BI^h))/eTI)
dBT = -xT*BT + xT*yTI*BT*(BI^h/(B0^h + BI^h))-q*BT*E
end K r yIB yTI eIB eTI B0 h xI xT q E
u0 = [500.0,200.0,100.0]
tspan = (0.0,1000.0)
p = (450, 1.1, 10, 10, 0.66, 0.85, 80, 1.2, 0.15, 0.06, 0, 0)
# K r yIB yTI eIB eTI B0 h xI xT q E
prob = ODEProblem(f,u0,tspan,p)
sol=solve(prob,Rosenbrock23())
using Plots
plot(sol, title = "Food Chain Pristine", xlabel = "Time" ,ylabel = "Density", lw=0.5)