Using JuliaDB to read in all the CSVs fails, but not when reading them singly

data
#1

I have a set of CSVs, about 1.7GB total size. (I’m attempting to compete in the r/dataisbeautiful visualization competition for this month).

When trying to load all the files with loadtable(), I run into some problems (running with multiple cores and with one core).

table = loadtable("/Users/mcintna1/Documents/DataSets/dataisbeautiful_march/",
                output = "data",
                indexcols = [1], 
                skiplines_begin = 1, 
                distributed = true)

This gives me the following error

Error parsing /Users/mcintna1/Documents/DataSets/dataisbeautiful_march/julia_analysis.ipynb

Couldn't split line, error at char 11:
"cells": [
_______^
error(::String) at ./error.jl:33
quotedsplit(::TextParse.VectorBackedUTF8String, ::TextParse.LocalOpts{UInt8,UInt8,UInt8}, ::Bool, ::Int64, ::Int64) at /Users/mcintna1/.julia/packages/TextParse/o3nmV/src/csv.jl:668
readcolnames(::TextParse.VectorBackedUTF8String, ::TextParse.LocalOpts{UInt8,UInt8,UInt8}, ::Int64, ::Array{String,1}) at /Users/mcintna1/.julia/packages/TextParse/o3nmV/src/csv.jl:462
#_csvread_internal#26(::Bool, ::Char, ::Char, ::Type, ::Type, ::Bool, ::Int64, ::Array{String,1}, ::Nothing, ::Int64, ::Array{String,1}, ::Bool, ::Array{String,1}, ::Array{String,1}, ::OrderedCollections.OrderedDict{Union{Int64, String},AbstractArray{T,1} where T}, ::Int64, ::Dict{Any,Any}, ::Array{Any,1}, ::String, ::Int64, ::typeof(TextParse._csvread_internal), ::TextParse.VectorBackedUTF8String, ::Char) at /Users/mcintna1/.julia/packages/TextParse/o3nmV/src/csv.jl:209
(::getfield(TextParse, Symbol("#kw##_csvread_internal")))(::NamedTuple{(:filename, :rowno, :colspool, :prevheaders, :noresize, :prev_parsers, :samecols, :skiplines_begin),Tuple{String,Int64,OrderedCollections.OrderedDict{Union{Int64, String},AbstractArray{T,1} where T},Array{String,1},Bool,Dict{Any,Any},Array{String,1},Int64}}, ::typeof(TextParse._csvread_internal), ::TextParse.VectorBackedUTF8String, ::Char) at ./none:0
(::getfield(TextParse, Symbol("##22#24")){Base.Iterators.Pairs{Symbol,Any,NTuple{7,Symbol},NamedTuple{(:rowno, :colspool, :prevheaders, :noresize, :prev_parsers, :samecols, :skiplines_begin),Tuple{Int64,OrderedCollections.OrderedDict{Union{Int64, String},AbstractArray{T,1} where T},Array{String,1},Bool,Dict{Any,Any},Array{String,1},Int64}}},String,Char})(::IOStream) at /Users/mcintna1/.julia/packages/TextParse/o3nmV/src/csv.jl:108
#open#310(::Base.Iterators.Pairs{Union{},Union{},Tuple{},NamedTuple{(),Tuple{}}}, ::Function, ::getfield(TextParse, Symbol("##22#24")){Base.Iterators.Pairs{Symbol,Any,NTuple{7,Symbol},NamedTuple{(:rowno, :colspool, :prevheaders, :noresize, :prev_parsers, :samecols, :skiplines_begin),Tuple{Int64,OrderedCollections.OrderedDict{Union{Int64, String},AbstractArray{T,1} where T},Array{String,1},Bool,Dict{Any,Any},Array{String,1},Int64}}},String,Char}, ::String, ::Vararg{String,N} where N) at ./iostream.jl:369
open at ./iostream.jl:367 [inlined]
#_csvread_f#20 at /Users/mcintna1/.julia/packages/TextParse/o3nmV/src/csv.jl:105 [inlined]
(::getfield(TextParse, Symbol("#kw##_csvread_f")))(::NamedTuple{(:rowno, :colspool, :prevheaders, :noresize, :prev_parsers, :samecols, :skiplines_begin),Tuple{Int64,OrderedCollections.OrderedDict{Union{Int64, String},AbstractArray{T,1} where T},Array{String,1},Bool,Dict{Any,Any},Array{String,1},Int64}}, ::typeof(TextParse._csvread_f), ::String, ::Char) at ./none:0
#csvread#25(::Base.Iterators.Pairs{Symbol,Any,Tuple{Symbol,Symbol},NamedTuple{(:samecols, :skiplines_begin),Tuple{Array{String,1},Int64}}}, ::Function, ::Array{String,1}, ::Char) at /Users/mcintna1/.julia/packages/TextParse/o3nmV/src/csv.jl:140
#csvread at ./none:0 [inlined]
#_loadtable_serial#3(::Char, ::Array{Int64,1}, ::Nothing, ::Nothing, ::Nothing, ::Bool, ::Bool, ::typeof(csvread), ::Base.Iterators.Pairs{Symbol,Int64,Tuple{Symbol},NamedTuple{(:skiplines_begin,),Tuple{Int64}}}, ::typeof(JuliaDB._loadtable_serial), ::UnionAll, ::Array{String,1}) at /Users/mcintna1/.julia/packages/JuliaDB/ZXPIx/src/util.jl:83
(::getfield(JuliaDB, Symbol("##190#193")){Array{Int64,1},Base.Iterators.Pairs{Symbol,Int64,Tuple{Symbol},NamedTuple{(:skiplines_begin,),Tuple{Int64}}},UnionAll})(::Array{String,1}) at ./none:0
do_task(::Dagger.Context, ::Dagger.OSProc, ::Int64, ::Function, ::Tuple{Array{String,1}}, ::Bool, ::Bool, ::Bool) at /Users/mcintna1/.julia/packages/Dagger/sdZXi/src/scheduler.jl:259
#143 at /Users/osx/buildbot/slave/package_osx64/build/usr/share/julia/stdlib/v1.1/Distributed/src/remotecall.jl:339 [inlined]
run_work_thunk(::getfield(Distributed, Symbol("##143#144")){typeof(Dagger.Sch.do_task),Tuple{Dagger.Context,Dagger.OSProc,Int64,getfield(JuliaDB, Symbol("##190#193")){Array{Int64,1},Base.Iterators.Pairs{Symbol,Int64,Tuple{Symbol},NamedTuple{(:skiplines_begin,),Tuple{Int64}}},UnionAll},Tuple{Array{String,1}},Bool,Bool,Bool},Base.Iterators.Pairs{Union{},Union{},Tuple{},NamedTuple{(),Tuple{}}}}, ::Bool) at /Users/osx/buildbot/slave/package_osx64/build/usr/share/julia/stdlib/v1.1/Distributed/src/process_messages.jl:56
#remotecall_fetch#148(::Base.Iterators.Pairs{Union{},Union{},Tuple{},NamedTuple{(),Tuple{}}}, ::Function, ::Function, ::Distributed.LocalProcess, ::Dagger.Context, ::Vararg{Any,N} where N) at /Users/osx/buildbot/slave/package_osx64/build/usr/share/julia/stdlib/v1.1/Distributed/src/remotecall.jl:364
remotecall_fetch(::Function, ::Distributed.LocalProcess, ::Dagger.Context, ::Vararg{Any,N} where N) at /Users/osx/buildbot/slave/package_osx64/build/usr/share/julia/stdlib/v1.1/Distributed/src/remotecall.jl:364
#remotecall_fetch#152(::Base.Iterators.Pairs{Union{},Union{},Tuple{},NamedTuple{(),Tuple{}}}, ::Function, ::Function, ::Int64, ::Dagger.Context, ::Vararg{Any,N} where N) at /Users/osx/buildbot/slave/package_osx64/build/usr/share/julia/stdlib/v1.1/Distributed/src/remotecall.jl:406
remotecall_fetch at /Users/osx/buildbot/slave/package_osx64/build/usr/share/julia/stdlib/v1.1/Distributed/src/remotecall.jl:406 [inlined]
macro expansion at /Users/mcintna1/.julia/packages/Dagger/sdZXi/src/scheduler.jl:272 [inlined]
(::getfield(Dagger.Sch, Symbol("##13#14")){Dagger.Context,Dagger.OSProc,Int64,getfield(JuliaDB, Symbol("##190#193")){Array{Int64,1},Base.Iterators.Pairs{Symbol,Int64,Tuple{Symbol},NamedTuple{(:skiplines_begin,),Tuple{Int64}}},UnionAll},Tuple{Array{String,1}},Channel{Any},Bool,Bool,Bool})() at ./task.jl:259

Stacktrace:
 [1] compute_dag(::Dagger.Context, ::Dagger.Thunk) at /Users/mcintna1/.julia/packages/Dagger/sdZXi/src/scheduler.jl:62
 [2] compute(::Dagger.Context, ::Dagger.Thunk) at /Users/mcintna1/.julia/packages/Dagger/sdZXi/src/compute.jl:25
 [3] #fromchunks#47(::String, ::Int64, ::Base.Iterators.Pairs{Union{},Union{},Tuple{},NamedTuple{(),Tuple{}}}, ::Function, ::Array{Dagger.Thunk,1}) at /Users/mcintna1/.julia/packages/JuliaDB/ZXPIx/src/table.jl:141
 [4] (::getfield(JuliaDB, Symbol("#kw##fromchunks")))(::NamedTuple{(:output, :fnoffset),Tuple{String,Int64}}, ::typeof(JuliaDB.fromchunks), ::Array{Dagger.Thunk,1}) at ./none:0
 [5] #_loadtable#188(::Nothing, ::String, ::Bool, ::Array{Int64,1}, ::Bool, ::Bool, ::Base.Iterators.Pairs{Symbol,Int64,Tuple{Symbol},NamedTuple{(:skiplines_begin,),Tuple{Int64}}}, ::Function, ::Type, ::String) at /Users/mcintna1/.julia/packages/JuliaDB/ZXPIx/src/io.jl:140
 [6] #_loadtable at ./none:0 [inlined]
 [7] #loadtable#186 at /Users/mcintna1/.julia/packages/JuliaDB/ZXPIx/src/io.jl:63 [inlined]
 [8] (::getfield(JuliaDB, Symbol("#kw##loadtable")))(::NamedTuple{(:output, :indexcols, :skiplines_begin, :distributed),Tuple{String,Array{Int64,1},Int64,Bool}}, ::typeof(loadtable), ::String) at ./none:0
 [9] top-level scope at In[8]:1

However, when loading each table by itself, I run into no errors!

for file in CSVs
    table = loadtable(file, indexcols = [1], skiplines_begin = 1)
    println("Loaded table: $file")
end

Where CSVs is a vector of all the CSV file locations. It cranks through this loop, and finishes with no errors.

I can’t quite figure out where this error is coming from, or how to deal with it. I thought it might be “bad data” in one of the CSVs, but it seems to be able to read each one just fine. Is it an error in the combining part?

0 Likes

#2

Take a look at the very first line of the error message:

You’re trying to parse a Jupyter notebook file (.ipynb) as if it were a data file. That’s not going to work. You’ll either need to tell loadtable to ignore that file or just store your CSVs in their own folder, rather than storing them with your notebook.

2 Likes

#3

Ohhhh, so when I handed in the directory to loadtable, it also tried to read in my .ipynb file as well as the CSVs!

Thank you! Glad it was a simple fix

0 Likes