Turing: selective truncated distribution error

Hi all,

I’ve been trying to fit a model to truncated discrete data using Turing, with the aim of recovering the non-truncated distribution’s parameter, and use the fitted model to predict new values based on new truncation points.

Below is a MWP example. Dummy data consists of a set of observations where the data is above or at the truncation threshold

Random.seed!(1234)

# Generate Poisson-distributed data
λ_true = 10.0  # True Poisson rate parameter
n_samples = 100  # Number of samples
poisson_data = rand(Poisson(λ_true), n_samples)

λ_threshold = 7.0
trunc = rand(Poisson(λ_threshold), n_samples)

poisson_data_truncated = DataFrame(obs_data = poisson_data, truncation = trunc)

poisson_data_truncated = @subset(poisson_data_truncated, :obs_data .>= :truncation)

The T() notation is from this link, whilst the lower kwarg is from a more recent post here

I then set up the Turing model:

@model function truncated_poisson_1(obs_data, trunc_thres)
    # Prior for λ
    λ ~ Exponential(5)
    T = typeof(λ)
    
    # Likelihood for each data point, truncated Poisson
    for i in 1:length(obs_data)
        obs_data[i] ~ truncated(Distributions.Poisson(λ); lower = T(trunc_thres[i]) , upper = T(100))
    end
end

model_1 = truncated_poisson_1(poisson_data_truncated.obs_data, poisson_data_truncated.truncation)
chain_1 = sample(model_1, NUTS(), 10)

and got the following error:

MethodError: no method matching _gammalogccdf(::ForwardDiff.Dual{ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}, Float64, 1}, ::ForwardDiff.Dual{ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}, Float64, 1}, ::ForwardDiff.Dual{ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}, Float64, 1})
  1. Is there anything wrong with my code above? I can switch to Gibbs(MH()) for sampling and it works - but the convergence is quote poor that I would much prefer NUTS() if possible

  2. I see from the earlier link that it worked with the Exponential distribution? I understand from various posts that NUTS() uses AD which causes some issues, but I was under the impression from Distributions.jl that the logccdf is available for all univariate distributions?

  3. Seems like others from StatsFuns.jl and Distributions.jl tried doing something about it but then stopped here and here.

As a brute-force - if I am to combine the use of NUTS() and to be able to use predict down the line, then I’ve come up with the below as a workaround:

@model function truncated_poisson_2(obs_data, trunc_thres, response_data)
    
    λ ~ Exponential(1)
    
    for i in 1:length(obs_data)
        if obs_data[i] > trunc_thres[i]
            # Poisson log-likelihood
            logp = logpdf(Poisson(λ), obs_data[i])
            
            tmp_cdf = zero(Float64)
            for j in 0:trunc_thres[i]
                tmp_cdf += pdf(Poisson(λ), j)
            end
            tmp_cdf = min(one(eltype(tmp_cdf)), tmp_cdf) # just in case

            trunc_logp = log1p(-tmp_cdf)  # errors out if log1p(-cdf(Poisson(λ), trunc_thres[i]))??
            
            Turing.@addlogprob! logp - trunc_logp
        end
        # for predicting data
        if response_data[i] === missing
            response_data[i] ~ Poisson(λ)
        end
    end
end

model_2 = truncated_poisson_2(poisson_data_truncated.obs_data, poisson_data_truncated.truncation, poisson_data_truncated.obs_data)

chain_2 = sample(model_2, NUTS(), MCMCThreads(), 100, 2)

Quite messy. I’ll need to add on Censoring later on too so really hoping for something along the lines of:

response_data[I] ~ censored(truncated(Poisson(λ); lower = trunc_thres[I]), upper = cen_thres[I])

Lastly, I also tried Normal distribution - same syntax - seems to have worked fine?

n_samples = 100  
m_true = 3.0
s_true = 0.5
normal_data = rand(Normal(m_true, s_true), n_samples)

μ_threshold = 2.5
trunc_2 = rand(Normal(μ_threshold, s_true), n_samples)

normal_data_truncated = DataFrame(obs_data = normal_data, truncation = trunc_2)
normal_data_truncated = @subset(normal_data_truncated, :obs_data .>= :truncation)

@model function truncated_norm_1(obs_data, trunc_thres)
    m ~ Exponential(1)
    s ~ Exponential(0.1)
    for i in 1:length(obs_data)
        obs_data[i] ~ truncated(Normal(m, s), trunc_thres[i], 100)
    end
end

model_3 = truncated_norm_1(normal_data_truncated.obs_data, normal_data_truncated.truncation)
chain_3 = sample(model_3, NUTS(), 10)

Yeah seems like an unncessary type constraint upstream that is not playing nice with ForwardDiff. Try changing the backend. The last resort would be to use gradient-free MCMC algorithms. If it boils down to that, try SliceSampling.jl it should work much better than Metropolis-Hastings.