You need to split into two callbacks (as your code errors on this), see http://docs.juliadiffeq.org/latest/features/callback_functions.html#CallbackSet-1 on how to combine them. Then the other error is
function affect!(integrator)
integrator.u[1] = stim
end
as stated in the docs: http://docs.juliadiffeq.org/latest/features/callback_functions.html#Example-1:-Bouncing-Ball-1
So all in all, slightly modified:
using Plots
using DifferentialEquations
# Parameters
const k21 = 0.14*24
const k12 = 0.06*24
const ke = 1.14*24
const α = 0.5
const β = 0.05
const η = 0.477
const μ = 0.218
const k1 = 0.5
const V1 = 6
# Time
maxtime = 0.1
tspan = (0.0, maxtime)
# Dose
const stim = 100
# Initial conditions
x0 = [0 0 2e11 8e11]
# Model equations
function system(dy, y, p, t)
dy[1] = k21*y[2] - (k12 + ke)*y[1]
dy[2] = k12*y[1] - k21*y[2]
dy[3] = (α - μ - η)*y[3] + β*y[4] - k1/V1*y[1]*y[3]
dy[4] = μ*y[3] - β*y[4]
end
# Events
function condition(y, t, integrator)
t - 0.05
end
function affect!(integrator)
integrator.u[1] = stim
end
cb = ContinuousCallback(condition, affect!)
# Solve
prob = ODEProblem(system, x0, tspan)
sol = solve(prob, Rodas4(), callback = cb)
# Plotting
plot(sol, layout = (2, 2))
(But please, next time provide an example which is more minimal and runs faster.)