Hi everyone,

First of all I wanted to congratulate you all for this amazing community.

I’m having issues with the solution of a Stochastic Differential Equation (SDE) when passing the seed kwarg to the solve method.

When I don’t pass the seed kwarg, the results I get are reasonable. On the other hand, when I pass the seed kwarg, the results are strange (i.e I get results that are either zero or far away from the expected result). I tried out different random number generators and the results are the same in the sense that are far from the expected ones.

I know that this problem is stochastic. Therefore, I don’t expect the results to be the same when I use different seeds, rngs, etc. But I’m surprised to see how off they are.

Below there’s an example.

```
using DifferentialEquations, Parameters, RandomNumbers, Statistics
X0 = 90.0
K = 80.0
r = 0.0
σ = 0.2
p = (m = r, s = σ)
function f(u, p, t)
@unpack m = p
m * u
end
function g(u, p, t)
@unpack s = p
s * u
end
# Instantiate random number generators
mtw_rng = MersenneTwisters.MT19937()
pcg_rng = PCG.PCGStateOneseq()
pil_rng = Random123.Philox4x()
xor_rng = Xorshifts.Xoroshiro128Plus()
# Create noise processes with the previously created random number generators
W_mtw = WienerProcess(0.0, 1.0, 1.0; rng=mtw_rng)
W_pcg = WienerProcess(0.0, 1.0, 1.0; rng=pcg_rng)
W_pil = WienerProcess(0.0, 1.0, 1.0; rng=pil_rng)
W_xor = WienerProcess(0.0, 1.0, 1.0; rng=xor_rng)
# Create sde problems
sde = SDEProblem{false}(f, g, X0, (0.0, 1.0), p)
sde_mtw = SDEProblem{false}(f, g, X0, (0.0, 1.0), p; noise=W_mtw)
sde_pcg = SDEProblem{false}(f, g, X0, (0.0, 1.0), p; noise=W_pcg)
sde_pil = SDEProblem{false}(f, g, X0, (0.0, 1.0), p; noise=W_pil)
sde_xor = SDEProblem{false}(f, g, X0, (0.0, 1.0), p; noise=W_xor)
function relu(X, p)
@unpack K, τ = p
return max(X(τ) - K, 0.0)
end
# Create Ensemble problems using Relu function as output
ens = EnsembleProblem(sde, output_func = (sol, i) -> (relu(sol, (K = K, τ = 1.0)), false))
ens_mtw = EnsembleProblem(sde_mtw, output_func = (sol, i) -> (relu(sol, (K = K, τ = 1.0)), false))
ens_pcg = EnsembleProblem(sde_pcg, output_func = (sol, i) -> (relu(sol, (K = K, τ = 1.0)), false))
ens_pil = EnsembleProblem(sde_pil, output_func = (sol, i) -> (relu(sol, (K = K, τ = 1.0)), false))
ens_xor = EnsembleProblem(sde_xor, output_func = (sol, i) -> (relu(sol, (K = K, τ = 1.0)), false))
# Set seed and number of trajectories
seed = 1234
n = 100_000
# When seed kwarg is passed to the solve method the results are way off
mean(solve(ens; trajectories=n).u) # The value for this is: 12.96215350985002
mean(solve(ens; trajectories=n, seed=seed).u) # The value for this is: 0.0
mean(solve(ens_mtw; trajectories=n, seed=seed).u) # The value for this is: 0.0
mean(solve(ens_pcg; trajectories=n, seed=seed).u) # The value for this is: 0.0
mean(solve(ens_xor; trajectories=n, seed=seed).u) # The value for this is: 7.115400747775788
# When seed kwarg is NOT passed to the solve method the results are close to the expected
mean(solve(ens; trajectories=n).u) # The value for this is: 12.861788416616768
mean(solve(ens_mtw; trajectories=n).u) # The value for this is: 12.932072289191881
mean(solve(ens_pcg; trajectories=n).u) # The value for this is: 12.879136140283649
mean(solve(ens_xor; trajectories=n).u) # The value for this is: 12.831574338732501
```