general unstructured grids (tet, hex)

Yes, there is no assumption about any structure in the grid.

wedge elements

There are no built-in “interpolations” for wedge elements but it should be fairly easy to add (as an example here is one implementation of an interpolation: https://github.com/KristofferC/JuAFEM.jl/blob/20d14ac223598c926d13023a511a48f0c5c1ce33/src/interpolations.jl#L176-L208.)

- nonconforming and adaptive meshes

Not really, the `Grid`

type we have in JuAFEM is quite simple and there isn’t really any hanging node support implemented.

I would note that JuAFEM is (at least intended) to be more a library than a “framework”, that is, you should be able to pick out the parts of JuAFEM that you like but not be forced “to use everything of JuAFEM just to use some of JuAFEM”. Just to give some example of toying around in the REPL:

```
julia> dim = 2; element = RefCube; order = 2
2
julia> ip = JuAFEM.Lagrange{dim, element, order}()
Lagrange{2,RefCube,2}()
julia> JuAFEM.reference_coordinates(ip) # coordinates of the reference element
9-element Array{Tensor{1,2,Float64,2},1}:
[-1.0, -1.0]
[1.0, -1.0]
[1.0, 1.0]
[-1.0, 1.0]
[0.0, -1.0]
[1.0, 0.0]
[0.0, 1.0]
[-1.0, 0.0]
[0.0, 0.0]
julia> [JuAFEM.value(ip, i, Vec(0.5, 0.3)) for i in 1:9] # local shape functions in xi = [0.5, 0.3]
9-element Array{Float64,1}:
0.013125
-0.039375
0.073125
-0.024375
-0.07875
0.34125
0.14625
-0.11375
0.6825
julia> sum(ans) # shape functions sum to 1
1.0
julia> qr = QuadratureRule{dim, element}(order); # typically want to integrate using some quadrature
julia> getweights(qr)
4-element Array{Float64,1}:
0.9999999999999996
0.9999999999999996
0.9999999999999996
0.9999999999999996
julia> getpoints(qr)
4-element Array{Tensor{1,2,Float64,2},1}:
[-0.5773502691896257, -0.5773502691896257]
[0.5773502691896257, -0.5773502691896257]
[-0.5773502691896257, 0.5773502691896257]
[0.5773502691896257, 0.5773502691896257]
julia> fe_values = CellScalarValues(qr, ip); # object used to create "global" shape values / function values etc
julia> JuAFEM.reinit!(fe_values, 5 .* JuAFEM.reference_coordinates(ip)); # initialize the object using the coordinates of some element, here just a bigger square than the reference one
julia> [shape_value(fe_values, #=q_point=# 1, i) for i in 1:9] # global shape values in the first quadrature point
9-element Array{Float64,1}:
0.20733615597604868
-0.055555555555555546
0.014886066246173483
-0.055555555555555546
0.30356120084098637
-0.08133897861876414
-0.08133897861876414
0.30356120084098637
0.44444444444444453
julia> sum(ans)
1.0
```

etc.