Hi,
I use Differentialequantions to solve the pde,
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}=\varepsilon \frac{\partial^{2} u}{\partial x^{2}}+u-u^{3}, \quad-1<x<1 \\
\left.u\right|_{x=\pm 1}=\pm 1 \\
\left.u\right|_{t=0}=0.53 x-0.47 \sin (1.5 \pi x)
\end{array}\right.
the spartial discrete using spectrum method,but the result as not I want
using LinearAlgebra
using Plots
using OrdinaryDiffEq
function cheb(n)
@assert n>0 "N should great than 1"
x=cos.(π*(0:n)./n)
c=vcat(2,ones(n-1),2).*(-1).^(0:n)
X=repeat(x,1,n+1)
ΔX=X-X'
D=(c*(1 ./c)')./(ΔX+I)
D-=diagm(sum(D,dims=2)[:])
D,x
end
meshgrid(x,y)=repeat(x',length(x),1),repeat(y,1,length(y))
L=2;N=20
D,x=cheb(N);D=D./(L/2)
x=(L/2).*x;D2=D^2
#initial condition
u₀=@. 0.53x-0.47*sin(1.5π*x)
function allen_cahn(du,u,p,t,D2)
ϵ=p
du=ϵ*D2*u+u-u.^3.0
du[1]=0.0;du[end]=0.0
du
end
tspan=(0.0,100.0);ϵ=0.01
prob=ODEProblem((du,u,p,t)->allen_cahn(du,u,p,t,D2),u₀,tspan,ϵ)
sol=solve(prob,Tsit5();saveat=2,reltol=1e-8,abstol=1e-8);
surface(sol.t,x,sol[:,:],xlabel="t",ylabel="x",zlabel="u")
the u not integrate,how do I choose ode alg or something