Simplifying trigonometric expressions in `Symbolics` and `SymbolicUtils`

Hi, I am new to Symbolics.jl and trying to verify the following trigonometric expression arising in energy system using the package:

\begin{align*} v_k(t) &= \bar{V} \cos(\omega t + \phi_k) \\ i_k(t) &= \bar{I} \cos(\omega t + \phi_k - \psi) \\ v_k(t) \times i_k(t) &= \frac{\bar{V}\bar{I}}{2}\cos(\psi)(1 + \cos(2(\omega t + \phi_k))) + \frac{\bar{V}\bar{I}}{2}\sin(\psi)\sin(2(\omega t + \phi_k)) \end{align*}

Verifying such trigonometric identities are very easy in Wolfram Mathematica:

(*Define voltage and current waveforms*)
vk[t_] := Vbar Cos[ω t + ϕk];
ik[t_] := Ibar Cos[ω t + ϕk - ψ];

(*Define instantaneous power as their product*)
pk[t_] := vk[t] ik[t];

(*Use TrigReduce to expand the product of cosines*)
expandedProduct = TrigReduce[pk[t]];

(*Define the target expression from the screenshot*)
targetExpression[
   t_] := (Vbar Ibar/2) Cos[ψ] (1 + 
      Cos[2 (ω t + ϕk)]) + (Vbar Ibar/
       2) Sin[ψ] Sin[2 (ω t + ϕk)];
	   
(*Verify if both terms are equal*)	   
Simplify[pk[t] - targetExpression[t]]

which outputs 0. However, when I try in Julia:

using Symbolics, SymbolicUtils

@variables t Vbar Ibar ω φk ψ

vk(t) = Vbar * cos(ω*t + φk)
ik(t) = Ibar * cos(ω*t + φk - ψ)
pk(t) = vk(t) * ik(t)
expandedProduct = simplify(pk(t), expand=true)
targetExpression(t) = (Vbar * Ibar / 2) * cos(ψ) * (1 + cos(2 * (ω*t + φk))) +
                      (Vbar * Ibar / 2) * sin(ψ) * sin(2 * (ω*t + φk))
difference = pk(t) - targetExpression(t)
simplified_difference = simplify(difference, expand=true)

The output is -(1//2)*Ibar*Vbar*cos(ψ) + Ibar*Vbar*cos(φk + t*ω)*cos(φk - ψ + t*ω) - (1//2)*Ibar*Vbar*sin(2φk + 2t*ω)*sin(ψ) - (1//2)*Ibar*Vbar*cos(2φk + 2t*ω)*cos(ψ). Is there any function similar to TrigExpand in Julia? Any tips regarding how to simplify the term in Symbolics will be much appreciated.

Just open an issue, the simplifer is probably missing a rule.