In bender’s decomposition, the subproblem is solved multiple times. In the first iteration, it is being solved by INTPNT. But, all subsequent solutions are performed by Mosek using Primal simplex only, even if we use the command
set_attribute(model, "MSK_IPAR_OPTIMIZER", Mosek.MSK_OPTIMIZER_INTPNT)
Following is the log of a sample run
Iteration Lower Bound Upper Bound Gap
[ Info: iteration 1:
Master problem solution: [0.0, 234.0, 60.0, 25.2, 100.1, 18.9, 51.5, 7.0])
[ Info: From SP_slide: 1, adding the feasibility cut
[ Info: iteration 2:
Master problem solution: [0.0, 234.0, 60.0, 25.2, 100.1, 18.9, 51.5, 10.5])
[ Info: From SP_slide: 1, adding the feasibility cut
[ Info: iteration 3:
Master problem solution: [0.2, 234.0, 60.0, 25.2, 100.1, 18.9, 51.5, 12.600000000000001])
[ Info: From SP_slide: 1, adding the feasibility cut
[ Info: iteration 4:
Master problem solution: [1.5, 234.0, 60.0, 25.2, 100.1, 18.9, 51.5, 12.600000000000001])
[ Info: From SP_slide: 1, adding the feasibility cut
[ Info: iteration 5:
Master problem solution: [3.5, 234.0, 60.0, 25.2, 100.1, 18.9, 51.5, 13.0])
[ Info: From SP_slide: 1, adding the feasibility cut
[ Info: iteration 6:
Master problem solution: [6.5, 234.0, 60.0, 25.2, 100.1, 18.9, 51.5, 13.0])
[ Info: From SP_slide: 1, adding the feasibility cut
[ Info: iteration 7:
Master problem solution: [0.2, 222.59999999999997, 60.0, 25.2, 100.0, 31.5, 51.5, 13.0])
[ Info: From SP_slide: 1, adding the feasibility cut
[ Info: iteration 8:
Master problem solution: [1.7000000000000002, 224.39999999999998, 60.0, 25.2, 100.0, 29.4, 51.5, 13.0])
[ Info: From SP_slide: 1, adding the feasibility cut
[ Info: iteration 9:
Master problem solution: [5.4, 228.6, 60.0, 25.2, 101.0, 24.5, 51.5, 13.0])
[ Info: From SP_slide: 1, adding the feasibility cut
[ Info: iteration 10:
Master problem solution: [3.6, 225.0, 60.0, 25.2, 100.0, 28.69999452755752, 51.5, 13.0])
[ Info: From SP_slide: 1, adding the feasibility cut
[ Info: iteration 11:
Master problem solution: [3.7, 222.6, 60.0, 25.2, 100.0, 31.499999999999993, 51.5, 13.0])
[ Info: From SP_slide: 1, adding the feasibility cut
[ Info: iteration 12:
Master problem solution: [7.300000000000001, 225.0, 60.0, 25.2, 100.0, 28.699999999999996, 51.5, 13.0])
[ Info: From SP_slide: 1, adding the feasibility cut
[ Info: iteration 13:
Master problem solution: [7.1000000000000005, 222.6, 60.0, 25.2, 100.0, 31.5, 51.5, 13.0])
[ Info: From SP_slide: 1, adding the feasibility cut
[ Info: iteration 14:
Master problem solution: [9.0, 222.6, 60.0, 25.2, 100.0, 31.5, 51.5, 13.0])
[ Info: From SP_slide: 1, adding the feasibility cut
[ Info: iteration 15:
Master problem solution: [10.700000000000001, 222.6, 60.1, 25.2, 100.0, 31.5, 51.5, 13.0])
[ Info: From SP_slide: 1, adding the feasibility cut
[ Info: iteration 16:
Master problem solution: [12.200000000000001, 222.6, 60.0, 25.2, 100.0, 31.5, 51.5, 13.0])
[ Info: From SP_slide: 1, adding the feasibility cut
[ Info: iteration 17:
Master problem solution: [13.600000000000001, 222.6, 60.0, 25.2, 100.0, 31.5, 51.5, 13.0])
[ Info: From SP_slide: 1, adding the feasibility cut
[ Info: iteration 18:
Master problem solution: [14.8, 222.6, 60.0, 25.2, 100.0, 31.5, 51.5, 13.0])
[ Info: From SP_slide: 1, adding the feasibility cut
[ Info: iteration 19:
Master problem solution: [15.9, 222.6, 59.99999999999994, 25.2, 100.0, 31.5, 51.5, 13.0])
[ Info: From SP_slide: 1, adding the feasibility cut
[ Info: iteration 20:
Master problem solution: [16.8, 222.6, 60.0, 25.2, 100.0, 31.5, 51.5, 13.0])
[ Info: From SP_slide: 1, adding the feasibility cut
[ Info: iteration 21:
Master problem solution: [17.5, 222.6, 60.0, 25.2, 100.0, 31.5, 51.5, 13.0])
[ Info: From SP_slide: 1, adding the feasibility cut
[ Info: iteration 22:
Master problem solution: [18.1, 222.6, 60.0, 25.2, 100.0, 31.5, 51.5, 13.0])
[ Info: From SP_slide: 1, adding the feasibility cut
[ Info: iteration 23:
Master problem solution: [18.6, 222.6, 60.0, 25.2, 100.0, 31.5, 51.5, 13.0])
[ Info: From SP_slide: 1, adding the feasibility cut
[ Info: iteration 24:
Master problem solution: [19.200000000000003, 222.6, 60.0, 25.2, 100.0, 31.5, 51.5, 13.0])
[ Info: From SP_slide: 1, adding the feasibility cut
[ Info: iteration 25:
Master problem solution: [19.6, 222.6, 60.0, 25.2, 100.0, 31.5, 51.5, 13.0])
[ Info: From SP_slide: 1, adding the feasibility cut
[ Info: iteration 26:
Master problem solution: [19.999999999999996, 222.6, 60.1, 25.2, 100.0, 31.5, 51.5, 13.0])
[ Info: From SP_slide: 1, adding the feasibility cut
[ Info: iteration 27:
Master problem solution: [20.3, 222.6, 60.0, 25.2, 100.0, 31.5, 51.5, 13.0])
[ Info: From SP_slide: 1, adding the feasibility cut
[ Info: iteration 28:
Master problem solution: [20.6, 222.6, 60.0, 25.2, 100.0, 31.5, 51.5, 13.0])
[ Info: From SP_slide: 1, adding the feasibility cut
[ Info: iteration 29:
Master problem solution: [20.900000000000002, 222.6, 60.0, 25.2, 100.0, 31.5, 51.5, 13.0])
[ Info: From SP_slide: 1, adding the feasibility cut
[ Info: iteration 30:
Master problem solution: [21.1, 222.6, 60.0, 25.2, 100.0, 31.5, 51.5, 13.0])
[ Info: From SP_slide: 1, adding the feasibility cut
[ Info: iteration 31:
Master problem solution: [21.3, 222.6, 60.0, 25.2, 100.0, 31.5, 51.5, 13.0])
[ Info: From SP_slide: 1, adding the feasibility cut
[ Info: iteration 32:
Master problem solution: [21.5, 222.6, 60.0, 25.2, 100.0, 31.5, 51.5, 13.0])
[ Info: From SP_slide: 1, adding the feasibility cut
[ Info: iteration 33:
Master problem solution: [21.6, 222.6, 60.0, 25.2, 100.0, 31.5, 51.5, 13.0])
[ Info: From SP_slide: 1, adding the feasibility cut
[ Info: iteration 34:
Master problem solution: [21.700000000000003, 222.6, 60.0, 25.2, 100.0, 31.5, 51.5, 13.0])
[ Info: From SP_slide: 1, adding the feasibility cut
[ Info: iteration 35:
Master problem solution: [21.8, 222.6, 60.0, 25.2, 100.0, 31.5, 51.5, 13.0])
[ Info: From SP_slide: 1, adding the feasibility cut
[ Info: iteration 36:
Master problem solution: [21.900000000000002, 222.6, 60.0, 25.2, 100.0, 31.5, 51.5, 13.0])
[ Info: From SP_slide: 1, adding the feasibility cut
[ Info: iteration 37:
Master problem solution: [22.0, 222.6, 60.0, 25.2, 100.0, 31.5, 51.5, 13.0])
[ Info: From SP_slide: 1, adding the feasibility cut
[ Info: iteration 38:
Master problem solution: [22.1, 222.6, 59.99999999999996, 25.2, 100.0, 31.5, 51.5, 13.0])
[ Info: From SP_slide: 1, adding the feasibility cut
[ Info: iteration 39:
Master problem solution: [22.1, 222.6, 60.1, 25.2, 100.0, 31.5, 51.5, 13.0])
[ Info: From SP_slide: 1, adding the feasibility cut
[ Info: iteration 40:
Master problem solution: [22.200000000000003, 222.6, 60.0, 25.2, 100.0, 31.5, 51.5, 13.0])
Problem
Name :
Objective sense : minimize
Type : LO (linear optimization problem)
Constraints : 254039
Affine conic cons. : 0
Disjunctive cons. : 0
Cones : 0
Scalar variables : 122648
Matrix variables : 0
Integer variables : 0
Optimizer started.
GP based matrix reordering started.
GP based matrix reordering terminated.
Optimizer - threads : 4
Optimizer - solved problem : the dual
Optimizer - Constraints : 122640
Optimizer - Cones : 0
Optimizer - Scalar variables : 376680 conic : 0
Optimizer - Semi-definite variables: 0 scalarized : 0
Factor - setup time : 1.42
Factor - dense det. time : 0.09 GP order time : 0.81
Factor - nonzeros before factor : 9.82e+05 after factor : 1.62e+06
Factor - dense dim. : 6 flops : 2.49e+07
ITE PFEAS DFEAS GFEAS PRSTATUS POBJ DOBJ MU TIME
0 1.4e+07 3.4e+00 1.1e+07 0.00e+00 5.040806270e+06 -5.689002211e+06 2.1e+02 1.81
1 9.5e+06 2.3e+00 7.1e+06 2.60e+01 1.139275519e+06 -7.707307219e+05 1.4e+02 2.19
2 7.6e+06 1.8e+00 5.7e+06 2.91e-01 8.765397154e+05 -7.361787948e+05 1.1e+02 2.55
3 7.0e+06 1.7e+00 5.2e+06 1.46e+00 7.861974399e+05 -6.086027294e+05 1.0e+02 2.89
4 6.8e+06 1.6e+00 5.1e+06 1.53e+00 7.424072730e+05 -5.642718538e+05 9.9e+01 3.25
5 6.7e+06 1.6e+00 5.0e+06 1.71e+00 7.396991711e+05 -5.287813680e+05 9.8e+01 3.61
6 5.1e+06 1.2e+00 3.8e+06 1.76e+00 5.503871981e+05 -2.322526846e+05 7.5e+01 3.95
7 4.7e+06 1.1e+00 3.5e+06 1.71e+00 5.132298619e+05 -1.711861941e+05 6.9e+01 4.33
8 3.4e+06 8.1e-01 2.5e+06 1.71e+00 4.204555586e+05 -7.282409503e+03 4.9e+01 4.70
9 3.3e+06 7.9e-01 2.5e+06 1.55e+00 4.171639825e+05 1.738989696e+03 4.8e+01 5.03
10 2.6e+06 6.2e-01 1.9e+06 1.52e+00 3.771276085e+05 6.913276921e+04 3.8e+01 5.38
11 6.3e+05 1.5e-01 4.7e+05 1.40e+00 2.934775788e+05 2.318655604e+05 9.2e+00 5.78
12 1.9e+05 4.6e-02 1.4e+05 1.12e+00 2.782973390e+05 2.601527023e+05 2.8e+00 6.17
13 7.0e+04 1.7e-02 5.2e+04 1.05e+00 2.743088217e+05 2.678967261e+05 1.0e+00 6.55
14 1.5e+04 3.7e-03 1.1e+04 1.02e+00 2.726584738e+05 2.712628337e+05 2.2e-01 6.92
15 3.2e+03 7.6e-04 2.4e+03 1.01e+00 2.723008127e+05 2.720107544e+05 4.7e-02 7.31
16 2.1e+03 5.0e-04 1.6e+03 9.90e-01 2.722696807e+05 2.720789938e+05 3.0e-02 7.64
17 1.3e+03 3.0e-04 9.5e+02 1.00e+00 2.722459108e+05 2.721294799e+05 1.9e-02 7.97
18 1.3e+03 3.0e-04 9.3e+02 7.70e-01 2.722481432e+05 2.721293393e+05 1.8e-02 8.33
19 1.4e+02 3.4e-05 1.0e+02 9.13e-01 2.722182342e+05 2.722047607e+05 2.1e-03 8.70
20 7.6e+01 1.8e-05 5.7e+01 9.35e-01 2.722169594e+05 2.722095494e+05 1.1e-03 9.08
21 3.7e+01 8.8e-06 2.7e+01 9.67e-01 2.722161718e+05 2.722125645e+05 5.4e-04 9.45
22 2.2e+01 5.3e-06 1.7e+01 9.85e-01 2.722158800e+05 2.722136813e+05 3.3e-04 9.81
23 1.3e+01 3.2e-06 9.8e+00 9.91e-01 2.722156952e+05 2.722143950e+05 1.9e-04 10.19
24 8.2e+00 2.0e-06 6.1e+00 9.95e-01 2.722155957e+05 2.722147874e+05 1.2e-04 10.53
25 4.1e+00 9.9e-07 3.1e+00 9.94e-01 2.722155159e+05 2.722151048e+05 6.1e-05 10.89
26 2.0e+00 4.8e-07 1.5e+00 9.99e-01 2.722154739e+05 2.722152739e+05 3.0e-05 11.25
27 8.2e-01 2.0e-07 6.1e-01 1.00e+00 2.722154503e+05 2.722153695e+05 1.2e-05 11.59
28 4.5e-01 1.1e-07 3.4e-01 1.00e+00 2.722154432e+05 2.722153988e+05 6.6e-06 11.98
29 3.0e-01 7.2e-08 2.2e-01 1.00e+00 2.722154403e+05 2.722154109e+05 4.3e-06 12.36
30 1.5e-01 3.7e-08 1.1e-01 1.00e+00 2.722154375e+05 2.722154228e+05 2.2e-06 12.69
31 1.8e-02 4.8e-09 1.3e-02 1.00e+00 2.722154350e+05 2.722154333e+05 2.6e-07 13.09
32 9.3e-03 2.6e-09 6.6e-03 1.00e+00 2.722154348e+05 2.722154340e+05 1.4e-07 13.44
33 3.1e-03 1.1e-09 2.1e-03 1.00e+00 2.722154347e+05 2.722154344e+05 4.5e-08 13.88
34 1.0e-03 9.2e-10 7.0e-04 1.00e+00 2.722154347e+05 2.722154346e+05 1.5e-08 14.25
35 3.2e-04 6.6e-10 2.1e-04 1.00e+00 2.722154347e+05 2.722154347e+05 4.8e-09 14.62
36 1.6e-04 7.9e-10 1.0e-04 1.00e+00 2.722154347e+05 2.722154347e+05 2.4e-09 14.97
37 8.2e-05 9.8e-10 4.8e-05 1.00e+00 2.722154347e+05 2.722154347e+05 1.2e-09 15.31
38 4.4e-05 7.3e-10 2.3e-05 1.00e+00 2.722154347e+05 2.722154347e+05 6.6e-10 15.67
39 2.3e-05 5.1e-10 9.7e-06 1.00e+00 2.722154347e+05 2.722154347e+05 3.5e-10 16.02
40 1.2e-05 7.6e-10 5.2e-06 1.00e+00 2.722154347e+05 2.722154347e+05 1.9e-10 16.38
41 7.4e-06 5.0e-10 2.9e-06 1.00e+00 2.722154347e+05 2.722154347e+05 1.0e-10 16.70
42 5.2e-06 3.5e-10 1.1e-06 1.00e+00 2.722154347e+05 2.722154347e+05 5.4e-11 17.03
43 2.2e-06 3.3e-10 7.0e-07 1.00e+00 2.722154347e+05 2.722154347e+05 2.9e-11 17.38
Basis identification started.
Primal basis identification phase started.
Primal basis identification phase terminated. Time: 0.30
Dual basis identification phase started.
Dual basis identification phase terminated. Time: 8.73
Basis identification terminated. Time: 9.23
Optimizer terminated. Time: 26.70
SP feasible reported
40 1.8994e+05 4.6216e+05 5.8901e-01
[ Info: From SP, adding the optimality cut 1.079154230239156 CumCapacity[BESS] - 965.9411194913768 CumCapacity[Coal] + 24.10911331012792 CumCapacity[Wind] - 859.585110771685 CumCapacity[Gas] + 41.55641806911097 CumCapacity[Solar] + 149.44251694935093 CumCapacity[Nuclear] + 49.18109181160243 CumCapacity[Hydro] + 2.2631225246166977 CumCapacity[PHES] + Γ >= 48431.22861658601
[ Info: iteration 41:
Master problem solution: [22.1, 199.2, 60.2, 25.2, 186.9, 31.5, 51.5, 13.0])
[ Info: From SP_slide: 1, adding the feasibility cut
[ Info: iteration 42:
Master problem solution: [22.1, 199.2, 60.4, 25.2, 186.60000000000002, 31.5, 51.5, 13.0])
Problem
Name :
Objective sense : minimize
Type : LO (linear optimization problem)
Constraints : 254039
Affine conic cons. : 0
Disjunctive cons. : 0
Cones : 0
Scalar variables : 122648
Matrix variables : 0
Integer variables : 0
Optimizer started.
Simplex reoptimization started.
Primal simplex reoptimization started.
ITER DEGITER(%) PFEAS DFEAS POBJ DOBJ TIME
0 0.00 NA 0.00e+00 NA 2.460246153124e+05 0.03
1 0.00 NA 0.00e+00 NA 2.460246153124e+05 0.12
Primal simplex reoptimization terminated. Time: 0.12
Simplex reoptimization terminated. Time: 0.19
Optimizer terminated. Time: 31.09
SP feasible reported
42 4.5995e+05 4.5997e+05 4.4567e-05
[ Info: From SP, adding the optimality cut 1.238276603223978 CumCapacity[BESS] - 949.7493865995763 CumCapacity[Coal] + 26.16854216575602 CumCapacity[Wind] - 852.7688115427384 CumCapacity[Gas] + 42.1860667082473 CumCapacity[Solar] + 164.13348665483272 CumCapacity[Nuclear] + 55.087714429273944 CumCapacity[Hydro] + 2.5682279766589375 CumCapacity[PHES] + Γ >= 52865.238444877934
[ Info: iteration 43:
Master problem solution: [22.1, 199.2, 60.4, 25.2, 186.60000000000002, 31.5, 51.5, 13.0])
Problem
Name :
Objective sense : minimize
Type : LO (linear optimization problem)
Constraints : 254039
Affine conic cons. : 0
Disjunctive cons. : 0
Cones : 0
Scalar variables : 122648
Matrix variables : 0
Integer variables : 0
Optimizer started.
Simplex reoptimization started.
Primal simplex reoptimization started.
ITER DEGITER(%) PFEAS DFEAS POBJ DOBJ TIME
0 0.00 NA 0.00e+00 NA 2.460246153124e+05 0.03
1 0.00 NA 0.00e+00 NA 2.460246153124e+05 0.12
Primal simplex reoptimization terminated. Time: 0.12
Simplex reoptimization terminated. Time: 0.20
Optimizer terminated. Time: 32.17
SP feasible reported
43 4.5997e+05 4.5997e+05 5.4832e-08
Terminating with the optimal solution