Hi all,

I am trying to find roots of this equation:

490x + 2450 e^{-x/50} - 2450 = 0

I use this code:

```
using Roots
f(x) = 490x + 2450*(exp(-x/50)) - 2450
find_zeros(f, -1000,1000000000)
```

the results are

**2-element Vector{Float64}:**

** -180.74752135437652**

** 1.7919879079366315e-16**

Now if I add 2 zeros the number change, to become smaller, why is this happening?

```
using Roots
f(x) = 490x + 2450*(exp(-x/50)) - 2450
find_zeros(f, -1000,100000000000)
```

**2-element Vector{Float64}:**

** -180.74752135437652**

** 5.738679610848498e-17**

If the interval is only from (-1000,1000) then the results are

```
using Roots
f(x) = 490x + 2450*(exp(-x/50)) - 2450
find_zeros(f, -1000,1000)
```

**2-element Vector{Float64}:**

** -180.74752135437652**

** 0.0**

The problem is even if the second root is converging to zero, the results are changing for different interval.

Why is the larger the interval the roots can be computed more precisely? not just 0 as root.