```
df = DataFrame(x=[3, 1, 2, 1], y=["b", "c", "a", "b"])
4×2 DataFrame
Row │ x y
│ Int64 String
─────┼───────────────
1 │ 3 b
2 │ 1 c
3 │ 2 a
4 │ 1 b
julia> filter(row->row.x==2,df)
1×2 DataFrame
Row │ x y
│ Int64 String
─────┼───────────────
1 │ 2 a
```

But now I want to filter row.x=2 or 3,so i think of broadcast.and tried

```
a=[2,3]
julia> filter(row->row.x==a,df)
0×2 DataFrame
julia> filter.(row->row.x==a,df)
ERROR: MethodError: no method matching filter(::var"#31#32", ::Int64)
Closest candidates are:
```

I don’t know how to do.

nilshg
#2
For DataFrames you can pass a `Pair`

as the first argument with a column name and a function to apply rowwise to that column.

Your main issue though has nothing to do with DataFrames but with the simple fact that

```
julia> 2 == [2, 3]
false
```

You are looking for containment, i.e. `in`

:

```
julia> filter(:x => in([2, 3]), df)
2×2 DataFrame
Row │ x y
│ Int64 String
─────┼───────────────
1 │ 3 b
2 │ 2 a
```

P.S. to make what you tried originally work more directly you could have checked whether the value was equal to 2 or to 3:

```
julia> filter(:x => row -> row==2||row==3, df)
2×2 DataFrame
Row │ x y
│ Int64 String
─────┼───────────────
1 │ 3 b
2 │ 2 a
```

But that’s a bit cumbersome especially for larger collections.

1 Like