I want to make a multivariate probability prediction, and this is my current MLJ model search, but I don’t know if these models are valid. How can I find an efficient prediction model for my data?
task(model) = model.is_supervised && model.prediction_type == :probabilistic
models(task)
47-element Vector{NamedTuple{(:name, :package_name, :is_supervised, :abstract_type, :deep_properties, :docstring, :fit_data_scitype, :hyperparameter_ranges, :hyperparameter_types, :hyperparameters, :implemented_methods, :inverse_transform_scitype, :is_pure_julia,
:is_wrapper, :iteration_parameter, :load_path, :package_license, :package_url, :package_uuid, :predict_scitype, :prediction_type, :supports_class_weights, :supports_online, :supports_training_losses, :supports_weights, :transform_scitype, :input_scitype, :target_scitype, :output_scitype), T} where T<:Tuple}:
(name = AdaBoostClassifier, package_name = ScikitLearn, … )
(name = AdaBoostStumpClassifier, package_name = DecisionTree, … )
(name = BaggingClassifier, package_name = ScikitLearn, … )
(name = BayesianLDA, package_name = MultivariateStats, … )
(name = BayesianLDA, package_name = ScikitLearn, … )
(name = BayesianQDA, package_name = ScikitLearn, … )
⋮
(name = ProbabilisticSGDClassifier, package_name = ScikitLearn, … )
(name = RandomForestClassifier, package_name = BetaML, … )
(name = RandomForestClassifier, package_name = DecisionTree, … )
(name = RandomForestClassifier, package_name = ScikitLearn, … )
(name = SubspaceLDA, package_name = MultivariateStats, … )
(name = XGBoostClassifier, package_name = XGBoost, … )
thanks!