This one is a bit weird, not sure it should be here or in Juno? Anyway, this code runs fine via reply from terminal but I get an error running this in Juno once it is using the GPU. The second part errors out.
using Flux
using CuArrays
m = Chain(flatten,Dense(784,10))
in = rand(28, 28, 1, 7)
m(in)
m_gpu = gpu(m)
in_gpu = gpu(in)
m_gpu(xpto_gpu)
The error I am getting, the most I can get out of Juno is:
CUDA error: a PTX JIT compilation failed (code 218, ERROR_INVALID_PTX)
ptxas application ptx input, line 488; error : Call has wrong number of parameters
ptxas fatal : Ptx assembly aborted due to errors
CUDAdrv.CuModule(::String, ::Dict{CUDAdrv.CUjit_option_enum,Any}) at module.jl:40
_cufunction(::GPUCompiler.FunctionSpec{GPUArrays.var"#20#21",Tuple{CuArrays.CuKernelContext,CUDAnative.CuDeviceArray{Float32,2,CUDAnative.AS.Global},Base.Broadcast.Broadcasted{Nothing,Tuple{Base.OneTo{Int64},Base.OneTo{Int64}},typeof(identity),Tuple{Base.Broadcast.Broadcasted{CuArrays.CuArrayStyle{2},Nothing,typeof(+),Tuple{Base.Broadcast.Extruded{CUDAnative.CuDeviceArray{Float32,2,CUDAnative.AS.Global},Tuple{Bool,Bool},Tuple{Int64,Int64}},Base.Broadcast.Extruded{CUDAnative.CuDeviceArray{Float32,1,CUDAnative.AS.Global},Tuple{Bool},Tuple{Int64}}}}}}}}; kwargs::Base.Iterators.Pairs{Union{},Union{},Tuple{},NamedTuple{(),Tuple{}}}) at execution.jl:335
_cufunction at execution.jl:302 [inlined]
#77 at cache.jl:21 [inlined]
get!(::GPUCompiler.var"#77#78"{Base.Iterators.Pairs{Union{},Union{},Tuple{},NamedTuple{(),Tuple{}}},typeof(CUDAnative._cufunction),GPUCompiler.FunctionSpec{GPUArrays.var"#20#21",Tuple{CuArrays.CuKernelContext,CUDAnative.CuDeviceArray{Float32,2,CUDAnative.AS.Global},Base.Broadcast.Broadcasted{Nothing,Tuple{Base.OneTo{Int64},Base.OneTo{Int64}},typeof(identity),Tuple{Base.Broadcast.Broadcasted{CuArrays.CuArrayStyle{2},Nothing,typeof(+),Tuple{Base.Broadcast.Extruded{CUDAnative.CuDeviceArray{Float32,2,CUDAnative.AS.Global},Tuple{Bool,Bool},Tuple{Int64,Int64}},Base.Broadcast.Extruded{CUDAnative.CuDeviceArray{Float32,1,CUDAnative.AS.Global},Tuple{Bool},Tuple{Int64}}}}}}}}}, ::Dict{UInt64,Any}, ::UInt64) at dict.jl:452
macro expansion at lock.jl:183 [inlined]
check_cache(::typeof(CUDAnative._cufunction), ::GPUCompiler.FunctionSpec{GPUArrays.var"#20#21",Tuple{CuArrays.CuKernelContext,CUDAnative.CuDeviceArray{Float32,2,CUDAnative.AS.Global},Base.Broadcast.Broadcasted{Nothing,Tuple{Base.OneTo{Int64},Base.OneTo{Int64}},typeof(identity),Tuple{Base.Broadcast.Broadcasted{CuArrays.CuArrayStyle{2},Nothing,typeof(+),Tuple{Base.Broadcast.Extruded{CUDAnative.CuDeviceArray{Float32,2,CUDAnative.AS.Global},Tuple{Bool,Bool},Tuple{Int64,Int64}},Base.Broadcast.Extruded{CUDAnative.CuDeviceArray{Float32,1,CUDAnative.AS.Global},Tuple{Bool},Tuple{Int64}}}}}}}}, ::UInt64; kwargs::Base.Iterators.Pairs{Union{},Union{},Tuple{},NamedTuple{(),Tuple{}}}) at cache.jl:19
(::GPUCompiler.var"#check_cache##kw")(::NamedTuple{(),Tuple{}}, ::typeof(GPUCompiler.check_cache), ::Function, ::GPUCompiler.FunctionSpec{GPUArrays.var"#20#21",Tuple{CuArrays.CuKernelContext,CUDAnative.CuDeviceArray{Float32,2,CUDAnative.AS.Global},Base.Broadcast.Broadcasted{Nothing,Tuple{Base.OneTo{Int64},Base.OneTo{Int64}},typeof(identity),Tuple{Base.Broadcast.Broadcasted{CuArrays.CuArrayStyle{2},Nothing,typeof(+),Tuple{Base.Broadcast.Extruded{CUDAnative.CuDeviceArray{Float32,2,CUDAnative.AS.Global},Tuple{Bool,Bool},Tuple{Int64,Int64}},Base.Broadcast.Extruded{CUDAnative.CuDeviceArray{Float32,1,CUDAnative.AS.Global},Tuple{Bool},Tuple{Int64}}}}}}}}, ::UInt64) at cache.jl:11
+ at int.jl:53 [inlined]
hash_64_64 at hashing.jl:35 [inlined]
hash_uint64 at hashing.jl:62 [inlined]
hx at float.jl:568 [inlined]
hash at float.jl:571 [inlined]
cached_compilation(::typeof(CUDAnative._cufunction), ::GPUCompiler.FunctionSpec{GPUArrays.var"#20#21",Tuple{CuArrays.CuKernelContext,CUDAnative.CuDeviceArray{Float32,2,CUDAnative.AS.Global},Base.Broadcast.Broadcasted{Nothing,Tuple{Base.OneTo{Int64},Base.OneTo{Int64}},typeof(identity),Tuple{Base.Broadcast.Broadcasted{CuArrays.CuArrayStyle{2},Nothing,typeof(+),Tuple{Base.Broadcast.Extruded{CUDAnative.CuDeviceArray{Float32,2,CUDAnative.AS.Global},Tuple{Bool,Bool},Tuple{Int64,Int64}},Base.Broadcast.Extruded{CUDAnative.CuDeviceArray{Float32,1,CUDAnative.AS.Global},Tuple{Bool},Tuple{Int64}}}}}}}}, ::UInt64; kwargs::Base.Iterators.Pairs{Union{},Union{},Tuple{},NamedTuple{(),Tuple{}}}) at cache.jl:0
cached_compilation(::Function, ::GPUCompiler.FunctionSpec{GPUArrays.var"#20#21",Tuple{CuArrays.CuKernelContext,CUDAnative.CuDeviceArray{Float32,2,CUDAnative.AS.Global},Base.Broadcast.Broadcasted{Nothing,Tuple{Base.OneTo{Int64},Base.OneTo{Int64}},typeof(identity),Tuple{Base.Broadcast.Broadcasted{CuArrays.CuArrayStyle{2},Nothing,typeof(+),Tuple{Base.Broadcast.Extruded{CUDAnative.CuDeviceArray{Float32,2,CUDAnative.AS.Global},Tuple{Bool,Bool},Tuple{Int64,Int64}},Base.Broadcast.Extruded{CUDAnative.CuDeviceArray{Float32,1,CUDAnative.AS.Global},Tuple{Bool},Tuple{Int64}}}}}}}}, ::UInt64) at cache.jl:37
cufunction(::Function, ::Type; name::String, kwargs::Base.Iterators.Pairs{Union{},Union{},Tuple{},NamedTuple{(),Tuple{}}}) at execution.jl:296
cufunction at execution.jl:291 [inlined]
macro expansion at execution.jl:108 [inlined]
gpu_call(::CuArrays.CuArrayBackend, ::Function, ::Tuple{CuArray{Float32,2,Nothing},Base.Broadcast.Broadcasted{Nothing,Tuple{Base.OneTo{Int64},Base.On...
(@v1.4) pkg> st
Status `~/.julia/environments/v1.4/Project.toml`
[c52e3926] Atom v0.12.14
[fbb218c0] BSON v0.2.6
[336ed68f] CSV v0.6.1
[c5f51814] CUDAdrv v6.3.0
[be33ccc6] CUDAnative v3.1.0
[5ae59095] Colors v0.11.2
[34da2185] Compat v2.2.0
[3a865a2d] CuArrays v2.2.1
[717857b8] DSP v0.6.7
[a93c6f00] DataFrames v0.20.2
[7a1cc6ca] FFTW v1.2.2
[5789e2e9] FileIO v1.3.0
[587475ba] Flux v0.10.4
[28b8d3ca] GR v0.48.0
[c91e804a] Gadfly v1.2.1
[7073ff75] IJulia v1.21.2
[82e4d734] ImageIO v0.2.0
[6218d12a] ImageMagick v1.1.5
[916415d5] Images v0.22.2
[682c06a0] JSON v0.21.0
[b9914132] JSONTables v1.0.0
[e5e0dc1b] Juno v0.8.2
[b13ce0c6] LibSndFile v2.3.0
[9c8b4983] LightXML v0.9.0
[ca7b5df7] MFCC v0.3.1
[cc2ba9b6] MLDataUtils v0.5.1
[eb30cadb] MLDatasets v0.4.0
[add582a8] MLJ v0.11.2
[dbeba491] Metalhead v0.5.0
[3b7a836e] PGFPlots v3.2.1
[eadc2687] Pandas v1.4.0
[d96e819e] Parameters v0.12.1
[91a5bcdd] Plots v1.0.14
[d330b81b] PyPlot v2.9.0
[295af30f] Revise v2.7.2
[bd7594eb] SampledSignals v2.1.0
[4d633899] SignalOperators v0.4.0
[b8865327] UnicodePlots v1.1.0
[1986cc42] Unitful v0.17.0
[e88e6eb3] Zygote v0.4.20
[de0858da] Printf
[9e88b42a] Serialization
julia> versioninfo()
Julia Version 1.4.2
Commit 44fa15b150* (2020-05-23 18:35 UTC)
Platform Info:
OS: Linux (x86_64-pc-linux-gnu)
CPU: Intel(R) Core(TM) i5-8400 CPU @ 2.80GHz
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-8.0.1 (ORCJIT, skylake)