Hi
I am using NLOP for topology optimization. First I did the deterministic topology optimization with constraint on volume, Now I am adding another constraint. As I checked the values for constraint it seems that the design is violating the second constraint and not trying to satisfy the second constraint. Do you have any comments on this or how can I fix the issue?
Thank you
function gf_p_optimize(p_init;u0, r, β, η, TOL, MAX_ITER, fem_params)
##################### Optimize #################
opt = Opt(:LD_MMA, fem_params.np)
opt.lower_bounds = 0.001
opt.upper_bounds = 1
opt.xtol_rel = TOL
opt.maxeval = MAX_ITER
opt.min_objective = (p0, grad) -> gf_p(p0, grad;u0, r, β, η, fem_params)
inequality_constraint!(opt, (p0, gradc) -> cf_p(p0, gradc; r, β, η, fem_params), 1e-8)
inequality_constraint!(opt, (p0, gradlsf) -> lsf_pc(p0, gradlsf; r, β, η, fem_params), 1e-8)
(g_opt, p_opt, ret) = optimize(opt, p_init)
@show numevals = opt.numevals # the number of function evaluations
println("got $g_opt after $numevals iterations (returned $ret)")
return g_opt, p_opt
end;