Yes, I confirm the regression:
julia> @benchmark update_dot_exposure!($(data_soa())...)
BenchmarkTools.Trial: 10000 samples with 994 evaluations per sample.
Range (min … max): 31.229 ns … 72.302 ns ┊ GC (min … max): 0.00% … 0.00%
Time (median): 31.284 ns ┊ GC (median): 0.00%
Time (mean ± σ): 31.424 ns ± 0.680 ns ┊ GC (mean ± σ): 0.00% ± 0.00%
▃█▇▁ ▁ ▂▄ ▁
████▅▄▄▁▁▁▃▁▁▃▃▄▃▁▁▃▃▁▁▄▃▄▁▃▃▃▁▃▃▇████▇▆▆▅▅▅▄▄▄▅▄▄▃▃▅▄▄▃▁██ █
31.2 ns Histogram: log(frequency) by time 32.9 ns <
Memory estimate: 0 bytes, allocs estimate: 0.
vs Nerd-sniping: can you make this faster? - #25 by lmiq
edit: although in my actual application it is much smaller:
% time julia +1.12 --project -e "using PDBTools; @time(sasa(atomic_sasa(read_pdb(\"6co8.pdb\"))))"
5.331173 seconds (55.80 M allocations: 1.993 GiB, 21.69% gc time, 3.27% compilation time)
real 0m5,899s
user 0m6,837s
sys 0m0,339s
#vs
% time julia +1.11 --project -e "using PDBTools; @time(sasa(atomic_sasa(read_pdb(\"6co8.pdb\"))))"
4.853135 seconds (55.80 M allocations: 1.987 GiB, 17.68% gc time, 0.22% compilation time: 100% of which was recompilation)
real 0m5,400s
user 0m6,273s
sys 0m0,391s